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Abstract
In the current study, we investigated atoms in screening environments like plasmas.

It is common practice to extract physical data, such as temperature and electron densities,
from plasma experiments. We present results that address inherent computational difficul-
ties that arise when the screening approach is extended to include the interaction between
the atomic electrons. We show that there may arise an ambiguity in the interpretation of
physical properties, such as temperature and charge density, from experimental data due to

the opposing effects of electron-nucleus screening and electron-electron screening.

The focus of the work, however, is on the resolution of inherent computational challenges
that appear in the computation of two-particle matrix elements. Those enter already at the
Hartree-Fock level. Furthermore, as examples of post Hartree-Fock calculations, we show
second-order Green’s function results and many body perturbation theory results of second

order.

A self-contained derivation of all necessary equations has been included. The accuracy of
the implementation of the method is established by comparing standard unscreened results
for various atoms and molecules against literature for Hartree-Fock as well as Green’s

function and many body perturbation theory.

The main results of the thesis are presented in the chapter called Screened Results, where
the behavior of several atomic systems depending on electron-electron and electron-nucleus
Debye screening was studied. The computer code that we have developed has been made

available for anybody to use.

Finally, we present and discuss results obtained for screened interactions. We also examine
thoroughly the computational details of the calculations and particular implementations of

the method.
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Chapter 1

Introduction

The theory of static shielding of interacting charges, as introduced by Debye and Hiickel
for electrolytic solutions [26], has become an important tool in many areas of physics. Of
particular interest are wide spread applications in the field of astrophysical and laboratory

plasmas.

To stake out the wide area of systems to which screening is applicable, we present the
Figure 1.1 where temperatures and densities of various plasmas are plotted. The Debye
screening applies for example to not strongly coupled plasmas (in the graph this is above

the I'. = 1 line, where I'. is the ratio of the average potential to kinetic energy [23]).

It is common practice to extract physical data, like temperature and electron densities, from
plasma experiments. In the present work we study results that address inherent computa-
tional difficulties that arise when the screening approach is extended to include the interac-
tion between the atomic electrons. The vast majority of earlier publications restricted the
application of Debye screening to the electron-nucleus potential. The inclusion of screen-

ing of the electron-electron interaction in plasma studies is not completely new, however.
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Figure 1.1: Overview of temperature and densities of several plasmas (taken from [23])

Previous work for atoms was restricted to two-electron systems. A representative list is
given by references [24], [32], [18], [31], [22] and [21]. Related studies from different ar-
eas of physics, which have helped to stimulate our interest in the present problem, are from
astrophysics [29] in the theory of proton scattering and an early publication from nuclear

physics [25].

The motivation for not neglecting the electron-electron screening has already been ad-
dressed in [24]: if the environment offers the possibility of screening, the more mobile
electron pairs will be able to take better advantage of it than the less mobile electron—ion
pairs, thus lowering the overall energy of the system. It has also been shown there that
in particular screening situations the bound excited states of the negative hydrogen ion are

likely to exist.

While the focus of the present work has been the resolution of inherent computational
challenges, we have, at the same time, established that the opposing effects of electron-
nucleus screening and electron-electron screening may induce ambiguity in the physical
properties (e.g. temperature and charge density) of the systems under investigation when

they are deduced from experimental data. This particular feature will require more detailed



investigations in the future and is stated here only cursorily.

The particular computational difficulty dealt with here is the question of how to incorporate
electron-electron screening, in an accurate and concise way, into the computation of general
two-electron matrix elements. This difficulty arises already at the Hartree-Fock (HF) level
of approximation, which is a common starting point for almost all many-body correlation
studies. The earlier studies [24], [32], [18], [31], [22] and [21] have in common that they
are computations for two-electron systems for which correlated wave functions provide a
natural entry point to implement Debye screening of the interaction between electrons. The

extension to larger systems is the main motivation of the current work.

In the Methods section we attempt to present a self-contained summary of the molecular
and atomic Hartree-Fock (HF) equations. We present several types of basis functions:
Slater Type Orbital (STO), Gaussian Type Orbital (GTO) and finite element (FE) basis
functions, and show calculation of the matrix elements. We further present equations for the
second order single particle many-body Green’s function and Density Functional Theory
to indicate how steps beyond HF might employ the present findings. To accomplish this,
we present equations that deal with implementing screening into HF matrix elements and

their numerical evaluation.

Chapter 3 (Unscreened Results) shows STO, GTO and FE results for atoms and simple
molecules and atoms on the HF level. We also show several second order Green function
calculations and second order many body perturbation theory results and compare against
literature to establish our implementation. We also run several convergence studies, both

for STO using even-tempered bases and FE by increasing the polynomial order.

In Chapter 4 (Screened Results) we show results of Hartree-Fock calculations in screening



environments. The method is based on article [16]. We show screened results for various
Debye lengths. We also present second order Green function results as an example of going
beyond Hartree-Fock to show that our method can directly be applied to post Hartree-Fock

calculations.

Chapter 5 (Summary and Conclusions) presents a discussion of the screened results and
an inherent ambiguity of determining the electron-electron and electron-nucleus Debye
lengths from plasma data. We also discuss advantages and disadvantages of STO and FE

as basis functions with regards to convergence and other numerical issues.

The Appendices contain derivations of standard, but important formulas needed for our
work. In particular they contain the technical details of our accurate and fast modified

Bessel function implementation in Fortran.

The main contribution of our present work is the solution of the mathematical problem
of screening and its numerical implementation in computer code. We use the screened
Hartree-Fock results to show the applications using some standard many body methods, it
is not the implementation of new post Hartree-Fock method. When we use the screened
Hartree-Fock results employing some standard many-body method, it is intended to demon-

strate that the present results are applicable in the usual way.

Our particular implementation of a finite element basis in the radial Roothan-Hartree-Fock
equations is a convenient technical addition to the existing literature. The usage of finite
elements in Hartree-Fock equations was pioneered by [53] and [54], where p-FEM is used
with Legendre polynomial shape functions. We use Lagrange interpolation polynomials
basis with nodes at Lobatto points together with either Gauss-Legendre or Gauss-Lobatto

quadrature. When the latter is used, then such a method is also sometimes called spectral



element method [47] or discrete variable representation [49], [48], [50], [52]. Compared
to [53], we have also simplified the two-particle matrix elements calculation using a weak
formulation of a second order differential equation for Hartree screening functions as sug-
gested by [4]. Other methods to solve atomic HF equations include shooting method [2],
B-spline method [3], finite differences [51] as well as Slater and Gaussian Type Orbitals
[19]. A recent review of applications of finite element methods in ab-initio electronic struc-

ture calculations is [7].



Chapter 2

Methods

2.1 Derivation of the Hartree-Fock (HF) Method

In this section we derive the (unscreened) Hartree-Fock equations in terms of wavefunc-

tions. More details can be found for example in [11].

The interacting Hamiltonian for the many body Schrodinger equation is:

ihd, [W(1)) = H[¥(1))
H=T+V = Z (@ T)5) ¢; + : Z cj-c; (ij|V'| k) crex
ij ijkl
where |i) are spin orbitals that require a sum over spin indices (the integration over w below

denotes the spin sum):

(t|T5) = /X:(X) <—%V2 - Z]X—Z—HRHO v (%) A3z dw

VI = [ 0G0 e ) dos, Py s



We would like to minimize the energy E = (U|H|¥) using the following basis for Z

electrons:

W) = cich -} |0)

We express the energy E in this basis:

= (V| H|V) =

={(0|cz-- -czclﬁcicg . ~-CTZ |0) =

z z
={0lcz - c2cq (Z ! (i|T)5) ¢+ 3 Z ch} (ij|V|kl) clck> el ...

i,5=1 i3,k 1=1
Z Z
= T + 3 ) (i5|VI]ig) — @1V i)
i=1 1,j=1

We minimize it with the constrain (i|j) = d;;:

1,7=1
We obtain:
z
T i)+ (V1) = (IVIGD)) = e i)
j=1
in the z-representation:
z
x|Tli) + ) (x| (IV]ig) — x[ (GIV]ji) = e (x]4)
j=1

A
XIT]iy + > (Gx[V]ig) — (Gx|V]ji)) = e (x]i)
7=1

cl, 10y =

2.1



And writing the individual terms explicitly (in this section, all orbitals are spin orbitals):

(xli) = 4:(x)

XTI ( Z|X_ ) )
(GxIVIij) = / G ) = [y v
Vi = [ sty )ty = | w]x—ﬂ)df” 0y(%)

we get the Hartree-Fock equations:
S [y ()Y ()
2__ ey (%) = I By (%) = ety
< A A= y| )W") Z/ ey Y0 = i)
(2.2)

Let’s introduce the number density n(x), Hartree potential V7(x) and nonlocal exchange

potential V, with its kernel U (x,y):

n(x) =Y [¢(y)
VH(X):/ZJ‘”@/’J’('}’” Py — n(y) d3y



then we can write the HF equations as:

(_§v2 — é + Vi (x) + Vx> vi(x) = €thi(x)

(_%VQ . é + vH<x>) () + / U, y)0i(y)dy = esthi(x)

The Hartree potential can be calculated by solving the Poisson equation:
V2V (x) = —4mn(x)

where:

= >l

The application of the exchange potential V, on any function f(x) can be calculated by:

Z Wf]

Wii(x /flx }’|

VAWy(x) = —dn f(x)¢ (x)

2.2 Roothaan Equations For Closed Shell Systems

In the previous section we derived the Hartree-Fock equations in terms of wavefunctions.
In this section we write the equations in terms of basis functions, those are called Roothaan-

Hartree-Fock equations.

Starting from (2.1) and integrating over spins we get (here ¢, £ are spatial orbitals, not spin
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orbitals):
N/2
T iy +> (2 (k[V]ik) — (k|V|ki)) = € |i) (2.3)

k=1

We introduce basis functions |u) by (below the greek letters refer to basis functions, latin

letters indicate spatial orbitals):

=> Culv)

substitute into (2.3) and multiply by (x| from the left:

N/2
Z (IT|w) Coi + > (2 {uk|VIvk) — (uk|VI[kv)) Ci = & Y (ulv) Cri  (24)
v k=1 v

Now we expand the orbitals | k) in terms of basis functions:

N/2

D ulTl) Coit DD (2D CanCly | (WBIVIva) = 5 (uBV]ar)) Cui = (2.5)
v v af k=1

=Y () C

v

We introduce the density matrix:

N/2 N/2
p=2 Z|a QZCakCM (8] = Zla as
k=1
N/2

Py =2 CurChy

k=1
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and get:

> (mmu) + 3 Pop ((nB|VIva) — 4 <u6|V|0ﬂ/>)> Coi=eY (uv)Cui (26)

v af v

introducing:

F/J,V - Hsl?re + GHV
HZD™ = (ulT]v)

G = Pag ((uB|VIva) — 3 (uB|V]av))

aB

Sy = (ulv)

the equations (2.6) becomes:

Z F;,LVCVi =€ Z Suuoui (27)

These are the Roothaan equations, also called Roothaan-Hartree-Fock equations. It is a

generalized eigenvalue problem.

The total energy is given below, where the a, b indices in the first equation refer to spin
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orbitals, while the ¢, 7 indices in the other equations refer to spatial orbitals:

E= gjwn §]mmmw—mm%m=
—221 +Z 2J(i,5) — K(i,7)) =
—gp w|+§j (i71V1if) = (i5|V15i)) =
_Zz i|Ti) +22 (ij|V1ij) — 5 (ij|V]5i)) =
:;memmwwzzzam@mmmwwﬁwmmh

wr o af i,

=S (ITW) P+ 23S PP ((uBIVIva) — L (uBIV]av)) =
pv uy o af

R ) -

=P (FHE + L(HEY™® 1 G,)) =

2 Z Pyy, Hcore 1/)

The same result can be derived in z-representation starting from (2.2) and introducing

spatial orbitals:

o Z [ 25010 Wz dily ) = e (x
( Y |xl+/ x —y] d) / Sy i(x) = €ehi(x)

(2.8)

The first integral in (2.8) is called the direct term and the second integral is called the

exchange term, which is nonlocal (the value of the exchange operator applied to the wave-
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function 1); at point x depends on values of the wavefunction at all other points).

We introduce basis functions ¢,,:

=3 Citu(x)

substitute into (2.8) and also multiply the whole equation by ¢}, and integrate over x:

N/2
Z/ 7l (‘W E +/ Z|x llpyk\( L y) b () Ci (29)
N/2
_Z/¢Z /¢V %(X)dgl’ Cm’ = Elz/¢;;(x)¢y(x)d3x Cm-

This can be written as:

Z F;wcz/i =€ Z S,uyCui

Fu = ng?re + G =T+ Vi + G
where:

T,

= [ 660 (=190, =%/V¢ Vo, ()0
vuy=/¢z<x>( 2o
oo fen P y>
- [ e > > [ s
Sy = / ¢:<x>¢y<x>d%
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Introducing the density matrix and density:

p(x,y) = (x|ply) = (x|o) Pug (Bly) = Zcba )Papds(y)

ap
N/2

Pog=2) CurCiy

N/2 N/2 = N/2
px)=2) [P =2 [{(xlk) > =2 (x[k) (k|x) = (x|plx) =

k=1 k=1 k=1

=Y PalX)Papd(x)

ap

Expanding the 1);, functions and using the density matrix we get for G,,.:

G =3 Fus [ 5100 | Mdy) ()

_‘Zpaﬂ / o (x / ¢”|X y, &%y g (x)d’

or

m, ZPaﬁ/gb* Qbu ¢5( )¢a( ) 2¢*( )¢a(x)¢z(y>¢u<Y)d3xd3y

x =yl

1
=5 Pan (081 lva) = 4 5l an))
T12 712
ap
These two particle matrix elements are often written in two different notations:
G = ) Pag [(uBlva) = 5 (uBlav)] =Y Pag [(wv|Bar) — §(pcr|Bv)]
af af

Physics notation uses the angle brackets, while the chemistry notation uses the round brack-
ets, but the main difference is in the order of indices. Note that this notation implicitly

assumes the - factor, so for example (;3|va) actually means (uﬁ\ ~|va) and one has to
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understand this from the context.

2.3 Two-particle Matrix Element

In this section we summarize some properties of the two-particle matrix element. The

two-particle matrix element is:

(ij|k1) = / vt %|X w’;(,| D) g3 = (2.10)

As said above, the (ik|jl) is called the physicists’ notation because the |jl) and |ik) kets

are:

1) = (%) (x)
|ik) = i (x)r(X')

The (ij|kl) is called the chemists’ notation. From (2.10) there are two types of symmetries

— interchanging of the dummy variables:

(i71K) = (k1) = / GO CDENE) 3

[x — x|

/w Vi) (x )d3x'd3x = (kl|ij) = (killj)

!X’ — x|
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and taking the complex conjugate:

(i]k1)* = (ik|jl)* (/@b w’fb{ x’(l W’(X/)d%d%’)*:
/@/Jz @Dkz w5 (x)7 (%)

— x|

dPxd’s’ = (jl|ik) = (ji|lk)

If the matrix elements are real, then:

(ij|kl) = (ik|jl) = (Gllik) = (5i]lk)

In general those are the only symmetries (4 total).

If however, the v;(x) functions are real, then there are additional symmetries: an exchange
i <» j and k <> [. The symmetries of (ij|kl) are exchange of ¢ with j or k with [ or the 7j

and k[ pairs (8 total):

(i7]kt) = (ilkl) = (ij|lk) = (jillk) =

= (Kllij) = (Iklij) = (kl|ji) = (Ik]77)

So if we view (ij|kl) as two boxes (-|-) then we can permute the labels in the given box
“.” as well as exchange the boxes (the only thing we cannot do is to take one particle from
one box and exchange it with a particle from the other box — for example 7 cannot be

exchanged with k). As such the box “-” indicates a pair of two electrons (in any order) and

the two electron integral assigns a unique number to a pair of such boxes (in any order).
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The symmetries of the (ik|jl) symbol are:

(ik|jl) = (gklil) = (illjk) = (jllik) =

= (killg) = (lilkj) = (kjlli) = (Lj]k1)

Example I: the Slater integral R (i, j, k, [) has all 8 symmetries (Slater integral uses physi-

cal notation).

Example II: In spherical symmetry, the 2-particle integrals can be written as (see below for

derivation):

(aBlvo) = (nalama nglgmg|nylymy nslsms) = (nalama nylymas|nglgmg nslsms) =

min(la+ly,lg+1s)
k k
= E " (los My Ly, my) ™ (Is, ms, lg, mp)
k=max(|la—ly|,|lg—ls|,|ma—m~])

5ma +mg—m~—ms,0

R¥(nala, nsls, nyly, nsls)
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They only have 4 symmetries, because spherical harmonics are complex. In particular:

min(lg+is,la+1y)
</6a|57> = Z Ck(lﬁam,37l5am6)ck<l’y7m’yalommoc)

k=max(|15—ls].Jloc~Ly |, lms—ms|)
5m5 +mao—ms—m~,0

R (ngls, nala, nsls, nyl,) =

min(lﬁ+l5,la+l,\,)
. k k Mo —M~+mg—mg
= E (o, ma, Ly, my) (L5, ms, lg, mg)(—1) YIS
k=max(|lg—Is|,|la =y |,/mg—ms])

6m5 +mag—ms—m~,0

RF(nola,ngls, nyly, nsls) = (aB]y6)

and

(v6laB) = (nylymy nslsms|nalame nglgmg) = (nylymy nalamalnslsms nglgmg) =

mil’l(l,\/-‘rla,ltg—&—lg)
= Z Ck<l’yvm’y7la7ma)ck(lﬁamﬁaléamé)

k=max(|ly—lal,lls—L3],my—mal)
5m7+m5—ma—m5 ,0

Rk (nylv, 71515, nala, nﬁlg)

= (aB|d)

We used the symmetries of the Slater integrals as well as the c* coefficients that change a

sign, but thanks to the 0,4, s—ma—mg,0- the overall sign does not change. The other two

symmetries are missing, i.e. (y5|ad) # (af|v0) and (ad|vB) # (af|vd).
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2.4 General Matrix Elements in Spherical Symmetry

In the case of spherical symmetry, one can evaluate all the integrals over angles analytically
and one obtains the so called radial Hartree-Fock equations [33]. We derive them in this

section in a step by step fashion.

In spherical symmetry the basis function can be expressed as a product of the radial function

and a spherical harmonic:

50(53) = Gy, (0 = 22y, )

It can be shown that the solutions are of the form:

Pnl(T)

i(%) = (%) = 22y, ()
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We can now write:

:ZOVZ¢V<X>
/% o= 5,0

/% Ji(x)d*z = Cy

Z §lulu5mumu n ny /¢nu HmH wnlm( ) T = n,,ll,ml, nlm
I
n P,
Z 5l/’4l1/5mumu TL;LTLV / gb Hl” l“mu Q) l( )Y (Q)T2deQ - Onylumu§nlm
I
—1
Z 5luly5m'u,my (Sql{i ny /an“lu (T)Pnl(r)dréllu(smmu = C’nulum,,;nlm
I

5llu5mml, Z "unu \/an,t nl( )dT - Cnulym,, inlm

o

l
5ll,, 6mml, Cn,,n - Cn,,ll,m,,;nlm

where

l _
Cn,/n, - nun,, / gb?’bu nl

Also we get:

wnlm Z Can,ll,m,, nlm¢nylumu< )

Pn Nyly
ﬂ%m(ﬂ) = Z Cnulumu;nlm¢ lr< )}/Eumu (Q) =

r
= Z 6ll mmycih,n (bﬂuf; (r> }/iymu (Q) =

¢nyl

- n,,n m
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From which it follows:
Pnl(r) = Z qum,,nqbnul(r)

The p index runs over all combinations of nl/m. In particular, here is an example of one

possible way to index the basis of 12 radial functions for each I:

ol n, by my
111 0 0
202 0 0
30 3 0 0
12112 0 O
3] 1 1 —1
40 2 1 -1
5 3 1 —1
24112 1 -1
251 1 1 0
260 2 1 0
2710 3 1 0
36112 1 0
37111
381 2 1 1
39 3 1 1
48112 1 1
491 1 2 =2
501 2 2 =2
51| 3 2 =2

So the radial index n,, always starts from 1 for each [,,.



2.4.1 Overlap Matrix Element

The overlap matrix element
SMV = / gb:(X)gbl,(X)dgfL‘

becomes

S/LV = Snﬂlﬂmﬂn”lymu - / Mylzmu (Q) ¢nVlV (T) }/Eumu (Q)TQdeQ -

r

:%wwm/¢wmmwmw:

0

= 5luly5muml, / ¢ny,lu (T>¢nulu (T‘)dT’ =
0

= 6lull/6 Sl“

MMy ~n,n,
where

St = [ om0 )il
0

2.4.2 Potential Matrix Element

The potential matrix element

V= [ 6100 (- 5 ) ot

22
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becomes

n Z\ On
Vl/ - nulumun,,l,,my /gb ul l* Q) (—— ¢ vl (T) qumy (Q)T2deQ =

pMpy

T
A
. / b, (1) (——) bt (P)dr —
O T
o0 7
= 5lulV§mMmy/ qbnulu (T) (__>
0 r

= 5lulu5 Vin

mpmy ¥ n,ny

where

nunu / gbnu (_g) gbnul(r)dr

2.4.3 Kinetic Matrix Element

The kinetic matrix element

T, = / 62(%) (~19?) 6, (x) Pz

becomes

1, py = Tnulumunv lymy / ¢n“l” lumu(Q) ((_%VQ) Mnumu (Q)) Tzd’I“dQ =

¢"ulu 1 82 1 8 lV<lV + 1) ¢nulu (T) 2 _
/ umu (Q) ((—2(%2 ~ 5 + 52 Yi,m, () | r*drdQ =

-
o ¢nul#(r> 82 10 l#(lu + 1)\ ¢n,1, () 21,
B 5l“l”5m“m”/0 r _2 o2 ror + 2r2 r rdr =
Ly
= 6l#lV5m#mVT#y
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where

L [T () 0> 10 W+1)\ éna(r)\ o, _
o [ S48 ) )
[T Paa(r) 1 [+ 1)\ ¢na(r) _
o r (( 2_07’27‘+ 2r2 ) r )TZdT_

] 2
— [ ot (s + WQ;”) )i =

0
> l
_ / (—%aﬁnul(rwzzul(mmml( WAL, o )
e l
-/ (QW 16 (1) + baa(r) “%l )

2.4.4 G Matrix Element

The G matrix is given by:
G = ZPaﬁ (Wﬂ"/@ - % <MB’O¢V>) = ZPaﬁ ((/U/]Ba) - %(pa\ﬂy)) .
af of

Now we use an identity that expresses the general two-particle integral (a/3|yd) in terms of

Slater integrals

R,k D) :/OOO /OOO L P P(r) By () B drds”



and that is proven in the section “Two-particle Integral” below:
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(aBlvd) = (nalama nglgmg|n,l,m, nslsms) = (nalama nylymy|nglgmes nslsms) =

min(la +1y 7l5 —l—lg)

= Z Ck(la,ma,l,y,mq{)ck(l(;,m(g,lg,mg)

k=max(|lo—ly || J1g —1s],ma—m)
5ma+mg—m»y—m570

R¥(nala, nsls, nyly, nsls)
Next we need to express the density matrix:

Pz =2 E CoiCpi
[
Pnalama;ngl,gm,g =2 g Cnalama;nilimiCnﬁllgm[g;nilimi =
_ l; l; _
= 23 Gt G Oty Ol Cl =
[
— 2(Sl lB mamg § n ni;nl -

= 01,1,0 Ple

MaMp= nang

where

TLTLB : : Na ngn'

The sum over all occupied orbitals ¢ can be written as:

l [e'S)

2.=2 - IPIDI

n;liym; =0 my=—In;=1



26

where the sum over [ is the outer sum, both m = m; and n = n; depend on [. We get:

GHV = Gnulumunulymu = Z Pnalamanﬁlﬁmﬁ ((,LLB|VO(> - % <,LL6’O{V>) - J/’“/ o K‘U'l/

nalamanglgmg

The first part is the direct term, the second part the exchange term. Let’s treat the direct

term first:
S = E Pratamangigms (WB|va) =
nalamanﬁlﬁmﬁ
min(l,+1y,lg+1a)
k k
- E Pnalamanﬁlgmg § c (lua my, lua my)c (lan Mey, lﬂa mﬁ)
nalamanglgmg k=max(|lu—l|,/lg—lal,|mp—my|)
5mu+mﬁ—m,,—ma,0
k
R (n,l,,ngls,nuly, naly) =
min(l,+1v,lg+Hla)
_ l k k
= § (5lal,35mamgpnin5 E C (l/u my, lua mu)c (laa me, lﬁa mﬁ)
nalamanglgmg k=max(|lu—lu|,|lg—la|,|mu—muy|)

5mu+m3 —my—maq,0

RE(nul,, ngls, nuly, nals) =

min(l,+1,,20)

- Z Zpéanﬁ Z Ck(l/“mﬂ’lV’mV)Ck(lamalam)

nang lm k=max(|l,—l,|,/mp—m.,|)
6mu—ml,,0
k
R(n,l,,ngl,nyl,, nyl) =

Oy Z ZP,IL e 0L m 1,y my) (20 + DR (nl,, ngl,nyl,, nal) =

nang

= 01,1, Ormyum, Z 20+1) 3" P Rl sl nyl, nal)

Nang
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For the exchange term we get:

Ky = % Z Pnalamanalﬁmﬁ (pblav) =

nalamanglgmg
min(l,+la,lg+1)
1 k k
= 2 Z Pnalamanglﬂmg Z C (lu,mu,la7ma)c (lV7mV7lﬁ7m6)
nalamanglgmg k=max(|ly—lal|,|lg=lv],/mu—mal)

5mM +mg—mq—m,0

Rk(n“lu, nalg, nala, nuly) =

min(l+la,lg+l)

=1 Z 5lalﬁ5mamﬁP,lL“nﬁ Z (LM, Loy ma) (L, my, g, mp)

nalamanglgmg k=max(|ly—lal,|lg—=lv],|mp—mal)
5mu+mﬁ—ma—ml,,0

RE(nul,, ngls, nala, nyl,) =

min(l,+1,1+1)

= 20m,m, Z Z - Z (L, my, L, m)c (1, m,, 1,m)

nang lm k=max(|l,—I|,[l—l,],/mu—m])

Rk(nulu, ngl,nal,nyl,) =

min(l,+1,14+1)

= $6mm, Z Z e Z (L, my, L m) (L, my,, 1,m)

nang lm k=max(|l,—1|,|l—1,|,|mu—m])

Rk(n#l#, ngl,nal,nyl,)



For [,, = [, this can be written as:

Lt
500,10 E E E (L, my, L,m) (L, my,, 1,m)
ply putmy TLQTLB J25 J 2R J23 [T
nang lm k=max(|l,—I|,|mu—m]|)

RF(nly, nal,nal,nyly,) =

L+

— 5 mﬂmyzz IS 21“ 5(1,,0,1,0)

Nang k=[]

Rk(nulu,n@l,nal,nyl“) =

= B S D Brny D3
nang k=|l,—I| 0 0 0

RE(nul,, ngl,nal,nyl,,)

All together we get:

Gul/ = 5lull,5mumy Z 2l +1 Z P?i ng

l nang
2
Ro(nulu,nﬁl,nylu,nal)— Z % g Rk(nulu,nﬁl,nal,nylu) =
k=1, —| 0 00
= 5lulu5mumuG£’LH7’1y

where

Gl = Z @U+1)Y P

nang
2
i
I+ I k l/

R(nyl,ngl',nyl,ngl’) — > 4 R*(nl, gl ngl’,n,l)

k=|l—1| 0 0 0

28
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Note: performing the sum over n,, and ng we get:

Ghmy = Z 22 +1)> ) " LCh L

n’ nang
2

L A
R(nul,ngl',nyl,nal') — Z i RE(nul,ngl! ,nal',n,l) | =
k=i-v; \0 0 0

=> 202 +1))

2

1+ Ik l/
R(nl, 0l n,dn'l) = > 1 RE(n, L, 'l 'l n,l)
k=i—r) \0 0 0

2.4.5 Two-particle Integral

We use the following functions for v:

wo) = 0y, (@)

(%) = Pn/l:f <T)Y'1ma(9)

vt = 2220y, o)
. Pnél’g (T’)

Wi(x) = — =Ygy (Q)

And the multipole expansion:

Ix — X’I Z it 2k+1qu(Q>Yk*q<Q/>
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And we get:

(ij|kl) = (ik|jl) = (11'|22") = (12|1'2") =

1
= (limlomg|——— = x| \lymilymy) =
/w ¢J|X x(’| )wl(X/>d3$d3x’:

r bima T r ,r./

P, Pn Pn P”/, /
_ / min (1) (Q) lll(”%m(@) )y ) Py @)

Z k+1 2k+1 k:q(Q>Yk*q(Q/)T’ZTQdeT/deQI =

= 37 i (D (Vi ()R [ Vi3, ()i ()i ()l

/ /r]z —47T Pn l (T)Pn/ 1 (T)Pn 1 (’I",)Pn/ I (”]"’)d?"d?"/ =
7”];+12k—|—1 101 1h1 202 22

=Y (b / o ()Yt () Vi ()02 / Voo oy (1) Yo () Vi (€)Y
k,q

rk o Arn
/ kil 2% + 1Pn111( )Pn’ll’1 (T)PTLQZQ (T/)Pnélé (T/)deT/ =

— Z(_l)m1+m2+q\/<2l1 + 1)<2l/1 + 1)(2k + 1) ll l/1 k l1 lll k

kg in 00 0f \—my m, ¢

\/(212+1)(21’2+1)(2k+1) L Iy k bl ok

o 00 0) \—me mh —q

rk A
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= V@ + )26 + 1)(20 + 1)(21 + 1)

: WU kN[ b 1k

Z (_1)m1+m2+q

/
q=- —m; My (g —ma My —¢q

k
.
/ r’éil Pty (1) P, (1) Pyt (1) Py, (r')drdr” =

min(ly+1,l2+1})

— > V(20 + 1) (20, +1)(20 + 1) (28, + 1)

k=max (|l ~1} ] |t~ 1}, lm1 —m} |

, I 1y k lo 1, k
(_1)m1+m25m1+m27m’17m’2,0 ' ! ? 2

0 0 0 0 0 0

Lol k Ll k

—my my my —m} —my mhy Mg — My

k
)
/ Pt (1) Pog (1) Pt () P 1)l

>

In the last step we used the fact that the 3j symbols are zero unless —m; +m} + ¢ = 0
and —msy + m/, — ¢ = 0, from which it follows that ¢ = m; — m} = —ms + m}, and so
one of the 3j symbols is zero unless m; + my — m} — m,, = 0, which is expressed by
5m1+m2_mfl —mj,0- Given this condition, the sum over ¢ must be such that one ¢ is equal to
my — m) = —mgy + mj, which means that k& > |m; — m/| = |mgy — m}| otherwise the 3
symbols will be zero. Finally, £ must also satisfy the conditions |l — I}| < k < |} + [}
and |l; — | < k < Iy + 1. The sign factor (—1)™+mete = (—1)mtmetmi—mi —

(—1)mtma=mz+ms jq equal to both (—1)™+™2 and (—1)"2~" so we just used the former.



We can write this using the ¢* symbols as:

min(l1 +l/1 o —‘rl/Q)

(ij|kl) = > V@2 + )21 +1)(2l, +1)(2, + 1)

k=max(|l =1} |,|la=15],lm1—m]|)

, LU k)L Uk
(=)™ (= 1) ™™ (= 1) ™ oyt -0 | P
0 0 O 0 0 O

—my my my —m) —my My Mg — M

k

n
7”];+1

min(ly+1,l2+1})
k / '\ k / /
= E (I, ma, 1, m7)c (la, ma, 1y, my)

k=max (|l =1 |,[l2—15],lm1—m])

"
(—1)m2 mhy 5m1+m2_m/1_m/270

k
/ P () Py (F) Pty (1) Pagy ()’ =

kt1.n
rs

min(l1+l’1,l2+l’2)
§ k 1 '\ k! /
= c (llymlallaml)c (l27m27l2am2)

k=max(|l1 =1 |,[la—15],lm1—m])

5m1 +ma—mj—m},0

k1l n
r>

k
/ T_<P 1l (T>Pn’ll’1 (T)P’I’ZQZQ (T,)Pnélé (T’)deT’/ =

32
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min(l1+l/1,l2+l/2)
2 : k I N k1 !
= c (llymlvllvml)c (127m27l27m2>
k=max(|l1 =1} |,|la—=15|,lm1—m]]|)

5m1 +ma—m}—m},,0

RE(nyly, mgly, n) 15, nblh)

This is the final formula, that was needed for expressing the G matrix in spherical symme-

try. In this form it is also identical to the reference [43], page 175, equation (9).

In the last equation we have introduced the so called Slater integral by:

(i,7,k,1) / / k+1 Py (r)P;(r") P,(r")drdr’

Another option, which was not used in this thesis, is to couple the angular momenta as

follows:

|l1l2LM> = Z (l1m1l2m2|LM) |l1m1> |l2m2> =

mima2

[ l L
= Z (—1>llilQ+M\/ 2L + 1 ! ? |l1m1) \l2m2>

mi1ms my Mo —-M

and we get for the matrix elements:

(Ll LM|———— |1 LMy =

1
x—x|
= Y D ()R L L (2L + 1)

mima m/ m2

Lo L A
/

my mog —M my my —M

1
(lymay | (lams]| m |l’1m’1) |l2m’2) =



=2 2.

mima mjml

l

ma

=22 (-

mima mjmi
h

my

1)l -BAMEM' SO ) (20 + 1)

l, L O
mo -M mll m,2 _M/
(ij]kl) =

)bl MEM SO LT (2L + 1)

I, L Lo r

my =M | \my my —M

Lol k)L Ik
> V(@ + )20+ 1)(20 + 1)(215 + 1) s S

k

k

, /
Z (_1)m1+m2+q ll ll k l2 l2 k

q=—k

>

; /
—my my q —Ma My —q

k
r
/ Tkil P, 1l1( )Pnlllll (T)Pn212 (r/)Pnlzlé (T/)deT/ -

34



=D D (L)

mima m/ m2

l l L I I L
Swardrn | b

my me —M my my —M

Ltk (L ook
S Ve DR F )LL) | :

k 0O 0 O 0O 0 O
k / /
S (Cpymrmera Lol k L Uk
q=—k —my mll q —ma mlz —q

k
r
/,,,,T—T—lpﬂlll(r)Pn/ll/l (1) Pyt (r") Py (r")drdr” =

>

= (=) thb(or 4 1)

Ltk (Ll ok
S Ve DR F )L RE ) [ 2

k 0O 0 O 0 0 O
, li 1o L
5MM'(5LL’(—1)I1HI+L 1 02
U U k

k
r
/ Tkil P 1l1( )Pn’ll’l (T)Pn2l2 (T,)Pnél’z (T,)dT‘d’r’/ _

>

7"
—Z / e Pt (1) Pag s () Py () Pagy, ()

(=) (2L 4+ 1)0pap b/ (20 + 1)(20 4+ 1) (20, + 1) (20, + 1)
Ll k(L ) k li Iy L

o 0o0/\ooof |y &k

35
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k
Z/ kilPlll 7) P (1) Prgiy (r") Py gy (7")drdr’

k rs

(~)" QL+ 1)

SprOnrar v/ (20 + 1)(205 4 1)(2ly + 1) (20, + 1)
Lok U\ ([l kL)L & L

0 00 0 0 0f |l I} k

1

Where we used the 65 symbol:

Li Il L _ Z (_1)ll+12+l’1+l’2+L+k—m1_m2_m/1_m/2_M_q
ll2 lll k ) mimam mQMq
my Mma —-M —my m’l q m’2 _mll M _Tn/2 e —

— E (_1)l1+l2+l/1+l/2+L+k;—ml_m2_mll_m/2_M_q

mimamimbyMq
/ / /
my my —M —-my mj q) \my —my —M
L Lk
% —

- Z 5M,m’1+m’2(_1)l1+l£+L(—1)m1+m2+q

mimam/,mbq
) AN A A L I,k

my me —M —my my q my, +my —M —my +my —q
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Where we have renamed —m), to m.

2.5 Radial Roothaan Equations

The Roothaan equations are:

> (T+V+G)wC EZZSWCW

v

§ (T + Vv + G)nulum#nylymuCn,,lumynilimi = €n;lym; E Sn#lumunyl,,m,,Cnylumynilimi

v v

E i E li
(T + V + G)nylumunulumu 5lilu6mimu Onl,ni - Enilimi Snul,um,unulumu 5lil1/5mimu Cnl,ni
14

v

l; l;
E (T +V+ G)nulumunulimi Cnunl €nilim; E :Snulumunulimz Onunl

ny Ny

5lul¢5mum¢ Z(T +V+ G)ﬁuny Crlzi,, = 51 Ly mumZEnzl mg Z nuny n‘ynl

%

The eigenvalues will be degenerate with respect to m; and so the radial Roothaan equations

are to be solved for each [:

Z(T + V + G)n nl, enzl Z nyNy nynl (211)

v

These equations are also sometimes called the radial Roothaan-Hartree-Fock equations.

The matrices S*, 7%, V! and G' were given in the previous section.

The total energy as given by various references can be expressed in several equivalent
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forms:

=3 ZPVH (Hp™ + Fu) = 2.12)
-5 R Lo -

— E l 1 l _
- 5lplu§mumupniny5l,ulV5my.mu( G)ﬁl‘uny -

nv
=222 Pin(F = 3G, =
ly my nuny
_ZZ 21 +1 Prlzin (F_ G)iﬁmy -
- Z Z 2l +1 n#nu - %G)izuny -
I nyny
_Zzzl+122nn nn 7lln Giluny)
I nuny
— Z Z (20+1 Zz i Coon <enls;w — %ZQ(%JF 1)2
I nuny U n’
Lok 2
R(n,l, 0l n, ') = > 4 R0l 0l nl) | | =
k=ji—r \0 0 O
=YD 22+1) (w =Y > @+ 1) (R(nl, 'l nl,n'T)+
I =n v
k=141 1 kU ?
-1 RF(nl,n/l',n'l',nl)
k=i—) \0O 0 0

Any of these formulas can be used in a computer program.
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2.6 Slater Type Orbitals (STO)

In this section we express the matrix elements in the STO basis. It turns out that all integrals

that we need can be expressed in terms of the following two simple integrals (where n, { >

0):

= n, —(r *(x\" —xdx 1 > n —x F<n+1> n!
/0 recdr:/o (E) e ?:C"H/o e *dx = cntl :C"H (2.13)

where

is the incomplete gamma function.

The STO basis function for the radial Schrédinger equation for P(r) is:

Poc(r) = Nncr”e_CT (2.14)

Where the normalization constant [V, is such that the STO orbital is normalized as the

radial wavefunction P(r):

(2n)!

1= / P2.(r)dr = N? / rPne=Xrdr = N2 ———
0 C( ) ¢ o C(QC)an
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from which we get:

(2()271-1—1

Npe = 4| 22—
¢ (2n)!

Note that for R(r) = @ we get the following STO basis function:

b,
Ryc(r) = ;(7’) = Nper" e ¢ (2.15)

One uses either (2.14) or (2.15) depending on whether one solves the radial Schrodinger

equation for P or for R = g.

2.6.1 Overlap Matrix Element

Sij = /Pnici(T)Pnjc:j (r)dr =
— /Nnigirnie_CiTNnjch”]’e_Cder =

= Npit; N, / it e (Gt gy =
(A AV

(s + ny)!

— N, N, .
“IG G Gy
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2.6.2 Potential Matrix Element

Z
V;j = /PniCi(r) <_?> Pnj(j (T)d?” -
Z
— /Nnigr”"ec“" (——) Nnjcjr"je’cﬂ"dr =
r

— _ZNNZCZNTLJC] /Tni+nj—1e—(fi+Cj)rdr —

= e g

2.6.3 Kinetic Matrix Element

, , (141
Ty = / (%PmCi(r)PnjCj (T) + Pa, (T) (27,2 )PnjCj (’I")) dr =

d, ... .d, . )
_ 1 g Gr T C]r ng Gr 75 er —
2Nnicilng, / (dr (re )dr (roem™") 4 1t rz | C ) dr

= %NniCiNnjCj / (nir”i_le_c" - Qr"ie_c")(njr"f_le_cﬂ — ernje_CjT)+

(L + D)2 (GO qp =

nny G 4G .
- %NniCiNnjCj/(< s - ’ , ’ "‘CiCj) pritns e (GG

2
+I(1 + 1)7“”1'*”9"267(@*9)7") dr =

= NNy, [ (g 4 20+ D)2 G160 (G st @160

GG e G dr =

(i +ny)! )
Cr G

(n; +nj — 1)!Jr
(G + )ratn

= %NniCiNnjCj ((nln] + l(l + 1))

+GiG;



2.6.4 Slater Integral

The Slater integral is

i
7,];4‘1

00 o) k
Rk = [ [ S5 PO RPE) R =
0 0

00 r T‘,k

:/0 dr/o dr' 7 PA(r)B(r) By () P )+
00 00 ,r,k

w[Car [ S PR A =

[e’s) r , ,r/k‘ , ,
:/0 dr/o dr 7akHH(?‘)Pk(?“)Pj(?“)Pl(7’)4‘

00 r! Tk
+/0 dr,/o drmB(T)Pk(T)Pj(T')H(T/):

00 r 1k
:/0 dr/o dr' 7 PL0) P Py () Pi(r)+

o) T 1k
[ [ ar S ORGP -

= RE (i, 5, k, 1) + R& (j, 1,1, k)

42
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where R% (i,7, k, 1) is the integral over the lower triangle (assuming 7 is the z-axis and 7’

is the y-axis), that is r > r':
(r) Pe(r) P (r') Pi(r') =

/ dr/ C“" (r)Pe(r) P (r') Pi(r') =

NmCangCg nkCk nzCz/ dr’

. — k=1
k.m+ repr (it =k = DU e
NnZQNnJCJ i nlgl/ dT’/ / /n] nze CJ Cl) (CZ +Ck)ni+nk—k e (C Ck)’r %

pritnk et o —(GHG)r = (GHa)r —

E (
R} (1,7, k,1) = /dr/dr k+1
/dr

n;+ng—k—1 Wi, v
» Z ™ (G + C) _

o V!
n;+np—k—1
NN N N (nz—i—nk—k—l)l +Zk: (nj‘i‘nl"‘k"_y)(Cz"f'Ck) -
niGt¥niCi 4 Vng et YniG V!(Cz + Cj + Ck + <l>nj+m+k+u+1 -

(Gi + G)ratme—h —~

(ni—i-nk—k—l)!
(G Greme

= NniCz‘NnjCj Ny, Ny,

kCk

where:

n;+ng—k—1

Hyy = Y (nj +mu+k + )G+ G)”
ikl V(G + G+ G + G)rotmthtv

v=0

The final formula for the Slater integral then is:

o n, +nr—k—1)! n,+n; —k—1)
Rk‘(z?j?k?l) N”zCanJCJNnkaanCl (( - ) h ( y : ) ﬁlk’)

HE, o+
(G Gk IR G g

2.7 Gaussian Type Orbitals (GTO)

In this section we express the matrix elements in the GTO basis [19]. It turns out that all

integrals that we need can be expressed in terms of the following simple integral (where
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0 1 0 1 oo T n+1l
/ rhe=dr = / e dx = / "7 et = ( - 1) =
0 /Cnt T 2./t g 20 "%

(2.16)
(n— 1! sy forevenn
()" for odd n
24/¢nt1
The GTO basis function for the radial Schrodinger equation for P(r) is:
P (r)= ]\fncrne_o"2 (2.17)

However, unlike STO, the GTO functions must satisfy the condition n = [ + 2¢ + 1 where
1 =20,1,2,... (this condition is later used in (2.16) to determine whether n is even or odd).
The normalization constant N, is such that the GTO orbital is normalized as the radial

wavefunction P(r):

— > 2 _ N2 00 2n —2(r? A2 T

from which we get:

B 1 2(4¢)2n 1
Noe = \/(Zn—l)!! T

Note that for R(r) = @ we get the following GTO basis function:

P,
Roc(r) = i(r) = Nper™te (2.18)
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One uses either (2.14) or (2.15) depending on whether one solves the radial Schrodinger

equation for P or for R = =

2.7.1 Overlap Matrix Element

S :/PnlC’L( )Pnjcj(T)dT‘:

/ ni G T Gr n CJ r'ie” CJ dr =

nlC’L ’)’L]C]/ nz+n]€ CZ+<J d?’ -

F(n1+nj+1)
= NniCiNnng 2 =

n+n

20G+¢G)

T
A 1N
NniCiNnJCj(nZ T 1)"\/2(2@- + 2¢; )t

2.7.2 Potential Matrix Element

Z
V;j = /PniCi(T) <_?) PnjCj (T)dT‘ =
A
= /]\fmgr’“e_m2 (——) Nnjcjr"je_cﬂ""gdr =
T

F ni+n;
:_ZNniCiNnjCj ( : )n =

2G + )

(m+n]’f2)'

——)!

= —ZNni; N, ey
2:/(G + ¢j)ritm
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2.7.3 Kinetic Matrix Element

(+1)
1= [ (3P0 0) + Pac ) G5 P ()] ar =
d d (l+1
= 5N Niye, / (@(r”iewz)g(r”je@’ﬂ) +r"ie<i’”2%r”je<ﬂz) dr =
= N [ (e emse® Gt tens sttt — agrn e o)y

(L4 1) 2 GO ) gy

nimn; s
- %NniCiNnjcj / (( sz — 2(ni¢; +n;¢G) + 4Ci<j7‘2> pritng (GG 4
—|—l<l —+ 1)7’"i+"1’ (C1+CJ > dr =
= %NmCiNnjgj / ((nzn] —+ l(l + 1))T'ni+nj_26_(Ci+<j)7"2 _ Q(nZC] n njCi)Tni—i-nje—(Q-i-gj)r?_i_

+4<’i<j,’ani+n]‘+2 —(Ci+¢)r )d?“—

(w> (M)
anCanjCj ((nzn] + l(l + 1)) : P ]-—1 - Q(nZCJ + nJCZ) 271 +n +1 +
2(Gi+ ()" 2(G + ¢)
n;+n;+3
+4Cz<] F( 2 o +3 +3> dr =
2G+G) T

Vs
202G + 2G|

= 3Nni¢: Naje, ((ninj + U1+ 1)) (ni +ny — 3)”\/

=2(n:¢; + 1y G) (s + 5 — 1>”\/2(2@- + zzj)n#"a'“ i

m
GOt O o 2@)%*"9*3)
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2.7.4 Slater Integral

We will need the following integral:

+1 2
u Cu?

n+1

2¢ 2

Just like for STO, we get:

RM(i,j, k1) = R (i, 4, k, 1) + R (4,4,1, k)

where R% (i,7, k, 1) is the integral over the lower triangle (assuming 7 is the z-axis and 7’

is the y-axis), that is r > r':

Pk( )P (r') Pi(r') =

/ dr/ dr
anCangC; ngCr nzCl/ dT/

= nHrn k
N ¢ N ¢ N kaN G / d/r/ 1k /nJ-J,-nle—(C]- CZ)T‘IQ F( niTNEg—~K (CZ _|_ Ck;) )
niGit ' niCittn n +

pritnk g +m6—(Ci+Ck)T2€—(CJ‘ +Q)r?

RE (i ok, 1) = / dr/ dr'~— Py(r) PL(r) P, () (") =
dr

nitng—k k
(CZ + Ck)
o (k1)1
- an anJCJ Nnka nQ / dr/r/krln]Jrnle (GitCitCrta)r' ( 2 — k) -
(Cz + Ck)

n;+np—k—2
s G

X
vl

v=0
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n;+nr—k
(st — )
n;+np—k
2G+G)
n;+np—k—2

y i (Q +Ck)y F(nj+nl+2k+2u+l)

- NniCiNnjCj Nnka an(z

njt+n;+k+2v+1 -

|
v=0 v 206G+ G+ G+ Q) 2
(g 1)
= Ny, e N Ny gk X
2(G+ ) 2
nit+np—k—2
L N GG (nj +mu +k+ 2 — /7 _
V‘ 7Lj+nl+k:+2u+2 7Lj+nl+k+21/+1
V=0 S22 (GGG )T T

VT k

= Ny, N,

[ +nj +ng+n;—2

5 and:

where p =

n;+ng—k
= 3 oo O (2 =k 27 (G + G + G+ )"
ijkl (nz + ng — I/)'()\z + )\k)1+y

v=0

2.8 Occupation Numbers

This section elucidates the occupation numbers in spherical symmetry. We have a sum over

N electron states like this:

N

D AX) =D Aums(x)

i=1 nlms

where A,,;,s(x) are some functions that depend on the state numbers (for example squares
of the wavefunctions). Then there are two options — either there is a way to sum over the

m and s degrees of freedom, so that the sum can be written exactly as:

Z Anlms(x) = Z Bnl(X)

nlms nl(ms)
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where B, (that don’t depend on m and s) will in general be different to A,,;,,,s, but the sum
will be the same. Or we have to approximate the sum (for example by averaging over the

angles, or in some other way) as:

D Auims(x) & > Bu(x)

nlms nl(ms)

In either case, the occupation numbers f,; are simply the number of times the functions

B (x) appear in the sum for the given n and [:

> Bux) =) fuBu(x)

nl(ms) nl
So for closed shells atoms, it is always:
fu=220+1)
because there are two spins, and 2/ + 1 possibilities for m, for open shell atoms, f,; is
anything between 0 and 2/ + 1.
2.8.1 Example |

As an example, let’s say that after some calculation for closed shell systems we get exactly:

Z Anlms(x) = Z 2(2l + I)Bnl(x)

nlms nl

Then because there are exactly 2(21 + 1) states in the nl shell, we write the above as:

D Anma(x) = 2021+ 1)Bu(x) = > fuBu(x)

nlms nl
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Then we do similar calculation for the open shell system, and we have to use some approx-
imations to get the following formula, where the B,,;(x) happen to be exactly the same as

for the closed shell system:

> Auims(x) = Y 2Bu(x)
nl(m)

nlms

Then we denote by f,,; the number of electrons in the shell n/ (at least one of them will be

open, for which nl we have f,;; < 2(2[ + 1)), and we can write the above as:

Z Anlms(x) — Z 2Bnl(X) = Z fnanl<X>
nl(m)

nlms nl

2.8.2 Example Il

The usual chemical occupation numbers for the uranium atom are:

fu=2(20+1)
fou = 2020+ 1)
fa = 2020+ 1)
fu=2(20+1)

for=2020+1) forl <2

Js3=3
Joo =2
Jo1 =06
Je2 =1

fro=2
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Sothen = 5,1 = 3 and n = 6, [ = 2 shells are open, all others are closed. By summing

all these f,,;, we get 92 states as expected:

anl:2+(2+6)+(2+6+10)+(2+6+10+14)+(2+6—|—10)+
nl

+3+2+6+1+2=92

Code:

def £ nl(n, 1):
if n < 50r (n ==5and 1 <= 2):
return 2+ (2+x1+1)

else:
d = {
(5, 3): 3,
(6, 0): 2,
(6, 1): 6,
(6, 2): 1,
(7, 0)y: 2,
}
if (n, 1) in d:
return d[n, 1]
else:
return 0
print "Sum £ nl =", sum([f_nl(n, 1) for n in

prints:

Sum f_nl = 92

range (8)

for 1 in range(n)])
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2.9 Radial Hartree-Fock Equations in Terms of Wave-

functions

The Roothaan-Hartree-Fock equations (2.11) are expressed in terms of basis functions. An-
other approach to express radial Hartree-Fock equations is in terms of radial wavefunctions.
This can then be used to solve the radial Hartree-Fock equations numerically for example
by finite difference method, shooting method, or formulate a continous weak formulation

to be solved by a finite element method.

We first introduce the Hartree screening functions that simplify many formulas in this sec-
tion, then calculate the direct and exchange terms in spherical symmetry and finally express

the radial Hartree-Fock equations in terms of radial wavefunctions.

2.9.1 Hartree Screening Functions

Hartree screening function Y*(f,r) is defined as:

00 k
Vi) = [ s

r>

and it occurs in many formulas in the Hartree-Fock theory, so this section shows how to

calculate it. It depends on k and a function f(r).

We first do the integral:

Yk _ Oorli /d/_ Tr/k /d/ Oork /d/_
(f,r)y=r ) ~ (rdr' =r ) Tk+1f(r) r+r r/k+1f(r) r =

B

L[ & w1 k ket [
:r—k/oa:f(x)dx+r+/T $k+lf(x)dx:Z(r)+T+ i karlf(:z;)dx
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where:

Z5(r) = Tik/or o* f(x)dx
P e+ g
ZF0)=0
Now we differentiate Y*(r):
dY¥(r) _ dZ*(r) | k41 e, 1
o0 | e )
— —éz’“( )+ f(r) k+ : ’“*1/ klﬂf(x)dx— f(r)
_ _Ezk( k k+1 I<:+1/ xlirlf(x)dx _
=220+ ?( o) 240) =
2k:12k( " k;r Y

Also Y (00) = Z¥(00), so we get the following set of first order differential equations with
boundary conditions:

One way to calculate the Hartree screening function is to integrate the second equation

from the left using the boundary condition Z*(0) = 0 and then integrate the first equation

from the right, using the boundary condition Y*(c0) = Z*(00).
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Another way is to obtain one second order equation. Expressing Z* from the first equation:

d k+1
Zr) = ——— [ = — YH(r) =
(r) 2k+1 (dr r ) (r)

. dY*(r) k—l—lyk
2k +1 dr 2k + 1

and substituting into the second equation we get:

—C%+§>(%11&$V”*iiﬂwﬁzf“>
(e M) v - 0

2k+1 r
(-5 + M) v = 2 )

With boundary condition on the left:

and on the right:

ro dYR(r)  k+1_, 5
. Ye(r) =Y
ST e T RO (r)
r dY*(r) k
— — YE(r) =
drl ar ki1 =0
dy*(r) k

2YE(r) =
dr +7’ (r)=0

Zk(r) =

which for r — oo becomes:
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but in practise, it’s better to use the former Newton (Robin) boundary condition. We have

obtained one second order equation for Y*(r)

( d? +k:(k:+1)>yk(r): 2k+1f(7")

dr2 72

with boundary conditions:

Y*(0) =0
Ay (r) k.,
— oY) =0

The weak formulation is:

LDyt - el = |

rmes 9k 1
T

f(r)o(r)dr

r

/0 YR ey () +

The boundary term can be simplified using the boundary conditions as:

_[Yk/(r)v(r)]gmm = _Ykl(rmax)v(rmax) + Ykl(o)v(()) = _Yk/(rmam)v(rmax) =

k

== Yk (rmax)v(rmax)
T'maz

So we get

/0 "y (r) + SEE D vk a4

2
r Tmazx

Tmax k
- / 251 ()

r

Y5 (Fimae )0 (Timaz) =

where the test functions v(r) have the constrain v(0) = 0 on the left boundary and no

constrain on the right.
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2.9.2 Hartree Potential in Spherical Symmetry

For both open and closed shell atoms we get exactly:

Vi) = [ /Zﬂ;% d'y =

’Yzm Q/ 2P2 ) )
=2 / dQ'dr’ =
2 \X— yl

nlm

=22 Z/ I 21/ 7 Yo ()i (V)55 () Yo (V) (') A r” =

nlm U'm

(20 +1
_222/ U'+1 2[’ 1 l’O(Q) Ar l(l m7lvm>P ( )d?“ -

nlm U

_222/ U'+1 \/ 2[’—%—1}/70 l m,l,m)P ( )d?“ =

nl U'=

:22/T—\/EYOT)(Q)Zco(l,m,l,m)Pgl(r’)dr’—l—

Yy / m\/%, V(@) Y (L, Lm) P () =

nl U'= m

1
T / Lt
>

—Z Z/ r)dr'+

+2ZZ/ U+ \/ 2[’—{- 1 l’O l m7l’m)PZl(T/)dT/ =

nl l'=
_anl/ )dT—{—

l/
+2ZZ \/ 2l’+1 l’O lmJ,m)/rl’frlpgl( )d

nl U'=
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For closed shell atoms we use the fact, that
l
Z (,m,l,m) = (204 1)dw

m=—I

and the second term disappears, and for open shell atoms we have to use the central field

approximation: we average the integral for V; over the angles:
m®%mm_$/m®m
and using the fact, that
/ V() dQ = Varéy,

the second term disappears as well. We got the same expression for both open shell (with
central field approximation) and closed shell (no approximation) atoms. The radial charge

density is:

n(r) = %%:f”l (Pn;(r))z

So we got:

%m=2m/%%wwz/@ﬁﬁW:WWWWﬂ
nl >

rs r
The Hartree screening function Y°(47n(r)r?, r) is given by the equation:

d® Lo 1 2
—@Y (r) = ;47m(r)7“
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So Vi (r) satisfies the radial Poisson equation:

(Vg(r)r)" = —%4#71(7")7’2

Vi (r)r + 2V (r) = —4man(r)r

Vi(r) + ;V;I(r) = —4mn(r)

2.9.3 Nonlocal Exchange Potential in Spherical Symmetry

Similarly, we calculate:

Z

Z/w’ 2 gt ) =
= / by, P'jﬁ,( () Py ()

,r./
/l/ ! k:q
rk 47 .
X ki1 mqu(Q)qu(Q’)erﬂdQ/ =
/l/ . .
- ;Z r 2k+1 / Vi ()Y () Vi () Yirgmr () Vg (2)dY x
Ti / /
X | =7 P (r'YPy (r")dr' =
>
Pyy(r) 4m 2k+1 [2U+1 , / ok
B 1,0,1,0)Yin(Q) | =55 Pu(r) Py (r')dr’ =
;; r  2k+1 4m 2l+1c(’0’70>l (€2) r’i“ 1((r") Py (r")dr
k= H—l
Y, 25/ L
_ Yin(©) [2U +1 + k(1 o,l,O kHP (') P ()1 Py (1) =
’l' k= \z V|
k=l+1' kT y
Z Z 2l’+1 / kilP ( )Pn’l’<7",)dT,Pn/l/(r) _
n'l" k=[l-U| 0 0 O >

2

k=41 I kU Tk
S e [ Pt P14 Py
v k=ji—r| \0 0 0 ">
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Functions with different spins don’t contribute to the sum, so there is no multiplication by
2. We assumed closed shells atoms (we summed over all m/ in the above). We used the

result of the integral of Example VI in the section Gaunt Coefficients from Appendix. We

also used:
2

20+ 1 20+ 1 I kU I kU
ST 10,1,0) = | A @l D@ D) — (2 +1)

20+1 20+1 00 0 00 0

(2.19)
2.9.4 Radial Hartree-Fock Equations
Using the above integrals, the HF equations become:
i+1 =z
i+ (S - Zv) o+

2

k=l+1U I kU T‘k
I [ Pl P ()3 Par) = ewPor)
n'l’ k=|1—1'] 0 0 O >

with:
1
Vi(r) = zl:fnz / EPgl(r’)dr’

Using the Hartree screening functions, the HF equations are:

—LPI(r) + (M _Z., vH<r)) Pu(r)+

272 r
2

R kU YRR Py (r), 7
BT B D) Perr) 1) p (1) = e Patr)

2 r
n'l’ k=|l—1/| 0 0 O




60

with:

2.9.5 Total Energy

We start with the formula (2.12) and express it using Hartree screening functions:

E=> 2(2,+1)x

lo 11
X Ea_z<2lb+1) Ro(a,b,a,b) —Z% ’ Ri(a,b,b,a) —
b ! 0 0 O
= Z fnl X
nl
2
I kU
X €nl — Z %fn’l’ R()(nl, n/l/, nl, n/l/) - Z % Rl(nl, n/l/’ n/l/’ nl) =

n'l’ k 0 0 O

o0 0( p2
- znl: fnlenl B Z Z %fnlfn’l’ (A Psl(r)wclr +

nl n'l’
2
N AT
- Z b / Pnl(T)Pn’l’ (T)
k 0 00 0

Yl(Pnl (T)Pn’l/(r)v T)

r

dr | =




r

= YO(4 2
— Z fnlenl — %/ 47Tn(7*)7a2 ( Wn(?“)?“ 7r)dr+
0

nl
2

l k: ll & Yan TPn//’f’7T
S e 32 / o) P () )r v(r).r)
nl 'l k 0 0 O 0

— Z Fri€nl — 27r/ VH(T)TL(T)TQdT—i-
nl 0

2

[ kU

+ Z Z %fnlfn’l’ Z % Am Pnl(T)Pn/l/(T)Y (Pnl(r)Pnlll(r)7 T) dr.

nl n'l k 0 0 O r

Any of these equations can be used to calculate the total energy.

2.9.6 Example: Helium

For the helium atom, the only nonzero occupation numbers are:

Ji0 =2
and the sum over n'l’ simplifies to:
2 2
g A 000
an'z' Z 5 = f103 = fu3 =1
n'l’ = 0 0 O 0 0O

so we only need to solve for the 1s state and we get:

YO(PH)(T’)PH)(T), T)

r

—5Plo(r) + (—g + VH(T)> Pio(r) — Pio(r) = €10Pro(r)

61
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with:

We can combine the equations:

Z | YO(Pi(r),r)

YO(PR(r),r)
—3Plo(r) + (—; +2 —

) Pio(r) — Pio(r) = €10Pro(r)

r r
and we obtain:
Z  Y%PX(r),r
—3Pro(r) + (—7 + %) Pro(r) = €10P1o(r)

2.10 Finite Element Method (FEM)

This section derives the finite element weak formulation and describes how the Hartree-

Fock equations can be solved using FEM.
The weak formulation is (u(r) = P,(r)):

[ (oo s (57 =T v et ) ars

2

i A A o0 k " o0
S e > [ Pt =B g, - [T ryutriar
'l k=|l—V| 0 00 0 " 0
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for closed shell atoms:

[ (w5 = T i) )uetn) ) ars

2

G A A NS b w
e Y | ooy D g,
'l k=|1—1'| 0 0 O 0 "
= e/ w(r)v(r)dr
0

or (here we use the 2/ index to label all functions w; for the given [)

/ * (lu/ (/) + (l<12+21) _Z, vH(r)) uﬂ(r)v(r)) drt

k=1+1U
2V +1 °° Y*(ua(r) Por
IR (L0,1,0) v(r)Pn/l/(r) alr)Por(r) )y,
r

n'l k=|I—1|

= 6/0 wy(r)v(r)dr

Introducing radial basis ¢,,; (1) (where p, v labels all basis functions for the given /):

uzl Z Cuzl¢ul
v(r) = Qulr)

we get (here 7 is again restricted for the subset corresponding to the given [):

> [ (§¢;l<r>¢;l<r) (B2 - 2+ VH<r>> )0 (r)) dr ot
5 00.0.0) [ )Pty VO P 0)

-2 Z r
:eZ/O (1) (r)dr Cuy

v ol k=|l-U|
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This is the discrete weak formulation of the radial Hartree-Fock equations. Let us now
show that this form is equialent to Roothaan-Hartree-Fock equations. We write the above

as:

Z F;lwcuil =€ Z V’Ll
I _ icore I _ il l l
F;LV_H;W -I—Gw,—Tw,-f-Vw,-i—G“V
where

HVZ/W%¢(ﬂ¢()+¢m(ﬂU+D¢M)

/ Gpu(r (—§> Gui(r)dr

<%=/<mmww%mw+

k=141 -
—Z Z \/ﬁ l 0, l/ / gbul ’l’ ) (¢Vl( ) 'l/( ) T) dr
Wl k=|I—U| r
/ ¢ul ¢I/l

Viu(r) = Z (20 + 1)M.

r
n'l’

The indices n'l’ go over all occupied orbitals P,;;. We introduce the charge density:

N/2

X)ZQZ!%(X)V:?ZMW —22 ”l \Yzm )=

nlm nlm

P? 21+1 1 P(r
_22 l 522(%“)%:71(70)

nl

We also introduce the density matrix Poléﬁ (where as before «, S run over basis functions
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for the given [ only):
Polzﬁ =2 Z C’cmlmcfﬁnlm Z 2 20+1 anlcﬁnl

where the C',,,; coefficients are the same for all m corresponding to the given /. The index

n runs over all occupied states for the given /. We can write n(r) as

T) = Z Coml(bozl(T)

" ir 22 (20 +1 TQ Bulr) _ i 2021 + 1 ZCWCMM
ZZ %l w%( )
Finally we get:
Vi(r) = _2(20+ Y Eur).r) _ Y0(47m Zngyﬁ O(urlr %l( )

r
nl

and

/OO G (r) Vi (r)du(r)dr = Z Z P(ilﬁ /OO ()P (r)Y (Gar (ri¢5l/(r), T)dr —
0 5 0

=33 PLR(ul, Bl vl al')

I ap
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and

_Z Z /2['—1—1 £(1,0,1,0) / (1) P (1) Y*(pui(r >7, o (1) T)dr:

n'l! k=|l—1'|

2

k=Il+U I kU
= — Z Z 21, % Z Can’l’cﬁn/l/x

n'l! k=|l—1| 0 0 O ap

o Y (pyi(r) gy (r), r
o R T

0

2
k=I+1 I kU

=-1>>"pPy RE(ul, B, o', 1)

U ap k=i—ry \ 0O 0 0

So we get our final equation for G, :

Gl, =Y PLR(ul, Bl vl al')+
U af
2
k=I+l I kU

1Ny Y R*(ul, BU',al’, vl) =

I aB k=i \O 0 0
2

k:l-‘rl’ 1 kU

= ZZ e | BOul, Bl vl all) = 3 Y R (ul, BU, o', 1)

=0 of k - \0 0 0

The density matrix is zero if there are no occupied orbitals for the given I’. As we can see,

all the matrices 7', V, S and G are identical to the Roothaan-Hartree-Fock results.

We use the spectral element method, which uses Lagrange interpolation polynomials and
Gauss-Lobatto integration [47]. This method is also sometimes called discrete variable

representation [49], [48], [50]. We can also use Gauss-Legendre integration points.
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2.11 4-Index Transformation

The 4-index transformation is a way to convert the two-particle integrals over basis func-

tions (a3|y9) into two-particle integrals over atomic (or molecular) orbitals (ij|kl):

(i[k) = > CaiCls;CouCar(eBly5)

afByo

See for example [11] for more details.

2.12 Many Body Single-Particle Green’s Function

In this section we present all equations that are needed to perform Green function calcula-

tions in the second order.

The self energy up to a second order is given by:

irlas)(2(yr|las) — (js|ar 1albr)(2(jalbr) — (jblar
Eij(E):Z( | ;(ina\_zr_(isl ))+Z( | ;(jL(JET!_Za_(ZJ )

ars abr

The a, b are occupied orbitals, r, s are virtual orbitals. The Dyson equation is:

G(E) = Go(E) + Go(E)S(E)G(E) (2.20)
where
-5t T
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The ¢, and |k) are HF energies and eigenvectors, Ej, and |k;,,;) are interacting energies and
eigenvectors. The matrix € is a diagonal matrix of the ¢, eigenvalues, E is a diagonal matrix
of the F, eigenvalues. Any Green'’s function G(F) (interacting or not) can be written using

the spectral density function A(z) as follows:

L R
G =g =2l o

= |k) (k|
:zk:/ (s — ) =

* A(2)
B /—oo E— Zdz

where

A(z) =) [k) (k[o(z — &) =

k

RN p— m—

- =07 (2 — €)% +n?

' 1 1
_Zm)(kuimi( _ ,>_
k =02 \z—€,+1i1n 2z — € —1in

— lim - (G(z + in) — G(z — in))

n—0 27

From (2.20) we get:
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The poles Ej, of the Green’s function G(FE) are then given by:

D(E) = det(E — € — £(E)) = 0

or equivalently:

(B(Ek) + €) |v) = B |v)

and from the theory of matrices:

1 =(E-h _ 9 0 B
9 1 9det(E—h)
= gp o84t )| = e —oE

one obtains that

dlog D(E)

Gz](E> = (_1)i+j+1 8(E(Ek) I e)ji

and

_ Olog |D(E)|

TrG(E) = ZGkk<E) oF

The number of particles /V can be calculated as follows (a are occupied orbitals, k are all
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orbitals):

N:;Hra)zz

:Za:ma)(ar:

:TrZ|a)(a:
_2m /ZE EkdE_

1
= TrG(E)dE =

T 2mi c
1 [olgD(B)
2™ Jo oF

The countour C' only encloses poles £, corresponding to occupied orbitals a. Similarly for

the total energy Fyu:

Ewtzgaan|<ra> f=

:Za:<r|a>E

:TrZ|a>E
/ZE EkEdE:

_ ! [ TG Ea -

2mi
1 [ olgD®)
21 Jo oF

For doubly filled orbitals we multiply the expressions by 2.
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2.13 Radial Density Functional Theory (DFT)

Since we give results obtained with DFT in the Unscreened Results section, we present
here the standard formulas for atomic (radial) DFT. A general overview of DFT is given
for example in [10] and [9]. In this section we only state the radial Kohn-Sham equations,

that are needed to solve atomic problems using DFT.

2.13.1 Kohn-Sham Equations

For spherically symmetric potentials, we write all eigenfunctions as:

¢nlm = Rnl }/lm

and we need to solve the following Kohn-Sham equations:

1+ 1R

1 1
_iRgl - ;R;Lz + (V T o3 ) Ry = Ry

With normalization:

/RilT‘QdT:1

For Schroedinger equation, the charge density is calculated by adding all “(n, 1, m)” states

together, counting each one twice (for spin up and spin down):

() =) 2uml’ =Y Ro2|Yin|* = Z;Riﬂz Vi |* = % zl:faniz

nlm nlm



72

where we have introduced the occupation numbers f,,; by
fnl =472 Z ’Yim|2

Normalization of the charge density is:

7 = /n(r)dgx = /n(r) r2dQdr = 477/n(r) ridr =
1 2 2
= 47T/E ;menﬂ" dQdr =
- anl /Ril ridr =
nl
- Z fnl
nl

So we can see, that it must hold:

anl =7
nl

where Z is the atomic number (number of electrons), and as such, f,; are indeed the oc-
cupation numbers (integers). The factor 47 is explicitly factored out, as it cancels with the

spherical harmonics: assuming all m states are occupied, this can be simplified to:

2+ 1
fu =472 Vi |* = dm2=— =22 +1)
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We can also use this machinery to prescribe “chemical occupation numbers”, that don’t

necessarily correspond to the DFT ground state. For example for the uranium atom we get:

fu=2020+1)
fou = 2020+ 1)
S =2(20+1)
fu=2020+1)

fu=2020+1) 1<2

Js3 =3
Joo =2
Jo1 =16
Je2 =1
Jr0=2

By summing all these f,,;, we get 92 as expected:

S fu =24 (246) + (246 +10) + (2+ 6+ 10 + 14) + (2 + 6 + 10)+
nl

+3+2+6+1+2=092

But this isn’t the DFT ground state, because some KS energies are skipped, for example
there is only one state for n = 6, [ = 2, but there are nine more states with the same energy
— instead two more states are occupied in n = 7, [ = 0, but those have higher energy. So
this corresponds to an excited DFT state, which is strictly speaking not physically valid in

the DFT formalism. But in practice this approach is often used. One can also prescribe



fractional occupation numbers (in the Dirac case).

2.13.2 Poisson Equation

Poisson equation becomes:

Vi(r) + %VI'{(T) = —4mn(r)

2.13.3 Total Energy

The total energy is given by:

E[n] = T,[n] + Eg[n] + E..[n] + V[n]
where

Tl = 3 ottt = [ (Vi) 4 Vo) + o)) =

- %: Jui€nt = / (VH(H + Vaelr) - §>inn(r)dzr

Epln] = 1 / Vit (F)n(r)der

Ey[n] = | epe(r;n)n(r

] )d3r
Vin] = / o(r)n(r)dr = — / %n(r)d?’r
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performing the angular integrations we obtain:

o) = Y e =4 [ (V) + Vel =2 ) (e
Eyn] = QF/VH(T)TL(T)TZ dr
Eyn] = 47r/exc(r;n)n(r)r2 dr

A
Vin] = —47?/ “n(r)rtdr = —47rZ/n(r)r dr
r
We can also express everything using the charge density p(r) = —n(r):

Tiln] = Zl: Fri€ni + Am / (Vﬂ(ﬂ + Vae(r) — Z) p(r)r? dr

Eyn] = —QF/VH(T>p(7’)7’2 dr
Ey[n] = —4ﬂ/emc(r;n)p(r)r2 dr

Vn] = 4n / gp(rw dr =477 / p(r)rdr

2.13.4 Asymptotic of Radial Schrodinger and Dirac Equations

In solving the atomic Kohn-Sham equations, one possible numerical method is a shooting
method, which needs to start with a proper asymptotic at the origin. Below we describe
the correct asymptotic for both Schrodinger and Dirac equations. The present approach
is directly applicable to the Dirac equation, so we also show the asymptotic for the radial

Dirac equation.
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Schrédinger

The radial Schrodinger equation is:

I(1+1)
212

P"(r) +2 <E V() - ) P(r) =0

Q) = P()

For r — oo, assuming V(1) — 0 we get:
P"(r) + 2EP(r) = 0

And the asymptotic is:

1(1+1)
272

For r — 0 and assuming that V' (r) can be neglected compared to the term (for

example V' (r) = —Z/r + O(1) is acceptable) we get:

Py — Dy

And the asymptotic is:

P(r) =r'*1

Q(r) = (1 + 1)
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Dirac

The Dirac equation is:

H =
() Vi-e

ORI 0
Q) Q)

Where the relativistic energy W = E+c2. In terms of the nonrelativistic energy it becomes:

V(r) c (—% + f)

Hnonrel =
c(LE+5) V(r)—2&
Hoo Pr) | _ 5 P(r)
Q(r) Q(r)

i ¢ —cid
L
and in terms of P(r) and Q(r):
AP —cQ =WP

cP' —2Q=WQ



let’s put the derivatives on the left hand side:

cP'=(W+c)Q

Q) =—(W —c*)P

write a second order equation:

AP =W+ = —(W+ AW —A)P=—-(W? —cH)P

and finally we get:

The asymptotic is:

4 2 [A_w2 2 A2
Q(T) ; (_ C W>€_ 462WT:_ c We_V 4c2WT

:W—|—02

We can also write it in terms of £:

78
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For r — 0 we write the full equations:

(V+A)P—cQ + ch =WP

cP 4 ctP (V- )Q =WQ
T

The we assume P(r) = r” and use the second equation to express Q(r):

cP'+ciP  cfrfl 4 ctrf 51 C(B+EK)

= vieT wovie " W-ovie
We can always write any potential as V' (1) = —@ and we get:
Q(T’) — 7,,871 C(ﬁ + ’i) _ 7”8 C(ﬁ + ’%)

w202 Zir)+ (W)

If Z(r) — Z as r — 0 then the term (IW + ¢?)r goes to zero and we get:

Q) =0
If Z(r) — Zir, then we get:
_ B (B + k) B M
Qi =r Zir+ (W +e)r 1ZmLWJrCQ

If Z(r) ~ 73 (harmonic oscillator) or Z(r) ~ r2, then the Z(r) term goes to zero and we

get:
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2.14 Systematic Convergence of STO and GTO

Bases

A perhaps not so well known feature of STO and GTO bases is the fact that they can be
made systematically convergent towards the exact answer for the ground state Hartree-Fock

calculation. This section gives an overview of the convergence algorithm.

2.14.1 GTO and STO Completeness

The mathematical framework was given by Klahn in 1985 in papers [36] and [35]. It is
shown there (see [36], eq. (29) and (30)) that the following set of N GTO basis functions:

Jre

forn=1,2,3,...,Nand () > 0is asymptotically complete in L?(0, o) if and only if the
following condition holds for the exponents as we increase the number of basis functions

N — oo:

N

CN
i Ll E— 221
N TR (22D

It is furthermore shown that the following set of /N STO basis functions:

o

forn = 1,2,3,...,N and () > 0 is asymptotically complete in L*(0, o) if and only if

the condition (2.21) holds.
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The condition (2.21) can also be reformulated in various other ways, see the papers for
more details. The task is now to provide a systematic construction of GTO and STO bases
to satisfy this condition and thus provide systematic convergence. One way to do that is

using a so called even-tempered basis.

2.14.2 Even-tempered Bases

An even-tempered (ET) basis is defined by making a special choice for the exponents ¢

¢ =an(Bn)"

where ay > 0 and Sy > 0. The whole basis for a given N then only depends on two
parameters oy and 5 (as opposed to a general basis which depends on /N usually distinct
parameters ¢2). The paper [36] shows that a necessary condition for this basis to satisfy

(2.21) (and thus being asymptotically complete) is:

N—oo

and also shows that this condition is sufficient if furthermore one of the following additional

conditions is fulfilled forall N =1,2,3,...:
1. By >1land ay < o/ <

or
2. By <landay >a” >0

or

3.0<d"<any<ad <o
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One of the first widely cited publications on even-tempered bases is [37] from 1979, which
uses the choice 1. The article provides a good motivation why that should work using
Gaussian integral transforms, as well as gives empirical evidence from numerical studies.

The Klahn papers [36] and [35] put this onto a firm mathematical ground.

In order to systematically converge the even-tempered basis, we need to find a formula
(preferably) for updating the coefficients oy and Sy as we increase the basis from N to
N + 1 such that the necessary and sufficient condition is asymptotically satisfied. There are
obviously many ways to do that, but one particular construction has worked well [38], [44]:
by imposing even more restrictions on ayy and Sy while still satisfying the convergence

criterion stated above, we can require:

a—0;8— 1Y - x

from which it follows

logaw — —o0;log 8 — 0; Nlog f — oo

Which is satisfied for example by:

o~ (B 1)

log B ~ N?

where a > 0 and —1 < b < 0. By taking the log of both sides we get:

logay = alog(By — 1) +d’

loglog By = blog N + b’



83

The constants a, b, @’ and b’ are independent of N. Writing these equations for N — 1 we

get:

logay_1 =alog(By_1—1)+d

loglog fn_1 = blog(N — 1) + V'

and subtracting from the above, we obtain:

By = (By_1)(F) (2.22)
OGN = GN-1 (—BN ! )“
By-1—1
This construction provides a systematic choice of the exponents. Reference [38] recom-
mends a = 0.5 and b = —0.5 for s-states and a = 0.6 and b = —0.45 for p-states based on
the numerical results of [37], but any values satisfying a > 0 and —1 < b < 0 must eventu-
ally converge, because they satisfy the convergence condition (but they might not converge
as fast). Note that due to its construction, the equation (2.22) is not the only possible way to
update the coefficients oy and [y, indeed a more general way has been proposed in [39],

but even the simplest update formula (2.22) seems to work well in most cases as suggested

by [37].

In practice, one starts from some preoptimized even-tempered basis for the given N and
then one updates o and S in each iteration using the equation (2.22). The basis must
converge towards the complete basis (exact Hartree-Fock limit). The update works for

both STO and GTO.

For molecular calculations, the reference [40] shows by numerical examples that one can

reuse the even-tempered bases that were optimized for the individual atoms.
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2.14.3 Rate of Convergence

Now when completeness is established, the next question is to ask about the rate of con-
vergence. All empirical evidence in [37], [40], [38] as well as our own results in this
thesis seem to suggest that the convergence is exponential with increasing /N. A theoretical
study [41] shows that Laguerre polynomials converge exponentially (using L? projections)
towards any function that has power series expansion about the origin, and has also an
exponential decay at oo (citing: “This is the exponential convergence which we believe
is typical of all problems wherein the trial functions are similar in kind to the function to
be fitted, but are different only in details of the shape.”). As shown in [41], the situation
is more complicated for the variational approximations to solutions of Schrodinger’s equa-
tion, because one has to study the solutions of the complete Hamiltonian. The article shows
that for explicitly correlated Hylleraas-type wavefunctions the convergence is not always
exponential, neither it is for the s-wave electron-hydrogen scattering at zero energy and
other problems. However, all these examples are two electron systems with a two-particle
Hamiltonian and the convergence rate is then determined by cusps and singularities of the
wavefunction (citing: “the slower power rate of convergence results when the trial functions

do not have the same analytical behavior as the function being represented.”).

On the other hand, for a ground state radial Hartree-Fock calculation, where the exact radial
wavefunction has a simple power expansion at origin and exponential decay at infinity, the
article seems to suggest that the STO basis should converge exponentially, as indeed seems

to be the case given our numerical results.

For GTO basis, several theoretical studies have been made as well. For example the papers
[42] and [46] seem to establish that the convergence of even-tempered GTO bases is also

exponential. A recent review article [45] is comparing STO and GTO.
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2.15 Screened Hartree-Fock

In this section we derive equations that implement screening in the Hartree-Fock matrix
elements. The idea is that the results presented here can then be used in the usual way in

any post Hartree-Fock calculation that is based on the HF matrix elements.

For convenience, let us repeat the radial Roothaan-Hartree-Fock equations for closed shell

atoms [33], [34]:

Z(T—FV—FG) _Enlz nuny nl,m?

ny

where the orbitals P, ,;(r) are given in terms of judiciously selected basis functions ¢,,,;(7):

= Z Cih,nl ¢nul (T)

Here the ¢,,,; are the orbital eigenenergies; the Cfbni are the coefficients of the eigenvector

corresponding to the (n;l) orbital. The matrix sz,my is the kinetic term given by:

z(z+ 1)

T = [ (%abw(r)%( )+ bua() g >>

the matrix Vé!my is the electron-nuclei potential term given by:

mmu / gbnul en )anu( ) (2.23)

which for the Coulomb potential is the well-known potential

(2.24)

A
Vven(”/’) = —? .
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The matrix S! _ contains all the overlap matrix elements of the type:

nuny

St = [ na)00ar)r

Finally the matrix Gn is the electron-electron interaction term:

ny

ZQ (2" + 1) Z Z cl C’,l:ﬂn ( O(nul,mgl',nylmal)

n’ nang
2

I+ 1 kU

1

! RE(nul,ngl',nal',nyl)
k=|l—U| 0 00

The index [’ runs over the orbitals in occupied shells. R¥(a, b, c,d) is the Slater integral

over the real basis functions ¢,,;(r)

R*(a,b,c,d) / / Ga(r1)0p(12) Vie(r1, 2) e (r1) Pa(r2)dridry (2.25)

the indices a, b, ¢ and d extend over all combinations of (n/) and for the Coulomb potential

the function Vi (ry, 1) is given by:

,r,k

Vilri,m) = =57 (2.26)
>

where - = min(ry,79), > = max(ry, 2).

The screening in plasma is a correlated many-body effect given in the lowest order by the

Debye-Hiickel potential between an ion and an electron [20], [23], [22]:

Here D = \/kgT./4me?n, is the Debye screening length. 7, and n, are the plasma electron
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temperature and density, kg is the Boltzmann constant and Z is the ion charge. The Debye

theory is limited to static screening.

In the presence of Debye screening, the two modifications to the Roothaan equations which
make this a challenging problem is that the electron-nuclei potential in (2.23) is now given

by:

Ven(r) = — 2.27)

and the electron-electron interaction potential is given by:

_Irp—ro]
[ Dee

Vee(|r1 —13) = (2.28)

EE—
1 — 12
which changes the Vj(r1, ) function in the Slater integral (2.25), that now becomes [16]:

_Iri—ro|

2 1 [t ce
Vi(ri,m2) = bt / ¢ Py, (cosf)dcosf =

2 1 |I’1—I‘2|

2k 1 r1+7r2 , 2 _ .2 2
_ SR / ¢~ P P, <w) dr . (2.29)
|

27"17“2 " —7‘2\ 27’17”2

Here the Py () are Legendre polynomials. The integral (2.29) can be evaluated analytically

as [25]:

Ik+% 1§< Kk+é 1T)>
Vi(ri,m2) = (2k + 1) \/7("— ) - ) (2.30)
< V!>

where I; 1 (r) and K, +1 (r) are the modified Bessel functions of the first and second kind.

In the limit D,,, — oo and D.. — oo (pure Coulomb interaction) we obtain the Coulomb
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k
case Vi(r,7m2) — 7% (using asymptotic forms of the modified Bessel functions around
>

r = 0) regaining equations (2.26) from (2.30) and (2.24) from (2.27).

Now we need to accurately evaluate the function Vi (71, r2) using either the equation (2.29)
or (2.30). The method proposed in [16] is to use Legendre expansion for (2.29). That
method suffers from numerical cancellations for high D.. so we simply evaluate Vj(r1,72)
using (2.30). This method depends on fast and accurate evaluation of the modified Bessel
functions of half integer order for all arguments from zero to infinity. For half integer order
the functions are given by an analytic formula involving hyperbolic trigonometric functions
and a polynomial [30]. This formula also suffers from numerical cancellation for small
arguments of the function /, 11,80 one has to use its hypergeometric series representation
for arguments smaller than a certain threshold [30]. However, the problem is that summing
a series is quite slow, so we have chosen a different route and implemented the modified
Bessel functions in terms of a rational approximation, which provides very accurate results
and it is also efficient at the same time. See the Appendix for more details and a provided

Fortran code.

Another problem is that for large 7, = 7, the function I, 11 (r) exponentially grows while
the function K 1 (r) exponentially decays, so the product of the two eventually becomes
numerically unstable. To remedy this issue, we factor the exponentials out and calculate

them separately.

Once we can accurately evaluate the function Vi (7, r2), we need to calculate the Slater in-
tegral (2.25). The method proposed in [16] is exploiting the analytic structure of Vi (r1,73)
and then for the special case of the Slater Type Orbitals basis functions it gives a final for-
mula that uses Gauss-Laguerre quadrature for the lower and upper triangular part of (2.25).

It works well for small D,,.

In the modified Bessel functions method we only know Vj (71, r2) numerically and as such
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we show here a general method that is independent of the particular form of the basis
functions or Vj(ry, ) and which is a generalization of the method proposed in [16]. The
function Vj(ry,r9) has a cusp at r; = 79, so in order to accurately evaluate the integral
(2.25) using Gaussian quadrature, we use the approach by [17] that splits the integral into

integration over lower and upper triangles as follows:

R¥(a,b,c,d) = /Oo /oo Vie(11,72)a(11) dc(11) 6 (12) pa(r2)dridry =
0 0
_ / / Vi (1, 72)da(r1) () 8o (r2)a(ra) drydra +

/OOO/OOVIC T1,7T2)
)

_I_

®a 7"1)¢c(7"1)¢b(7”2)¢d(7“2)d7"1d7"2 =

0

/ / Vk 7"177’2)
0

/00/ Vie(r1, 72) @a(r1) e (r1) P (12) @a(12)dridra+

[e=]

_|_

)&a(

(
/00/ Vi(r1,72) @a(r1) @e(r1) o (r2) fa(r2)dridra+
Pa(r1)de(r1) dp(r2) @a(r)dridry =

)&a(

(

+

/ / Vie(r1,72)05(11)@a(11) a(12) Pe(r2)dridry =
0

0

= RkA(a, b,c,d) + R’Z(b7 a,d,c)

where

RZ(G,Z);C,CZ)I/ d"”l/1dT2Vk(7”1,7‘2)%(7”1)¢c(7”1)¢b(7’2)¢d(7’2) (2.31)
0 0

In (2.31) we first evaluate the integral over r5:

ffd(rl) —/0 1Vk(rl,r2)¢b(r2)¢d(r2)dr2
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using Gauss-Legendre quadrature of order /V,. Then we can calculate the integral over 7;:

fﬁwmmzlﬂMm@mmmmn

by dividing the interval (0, co) into elements (0, a;), (a1, az), dots, (a,, 00). We use Gauss-
Laguerre quadrature rule on the infinite element (a,,, c0) and Gauss-Legendre quadrature

rule with the same number of points on all the other finite elements.

This method works for any types of basis functions.

2.15.1 Slater Type Orbitals Basis

In the STO basis, the above integrals can be evaluated analytically for the Coulomb case
[19]. In the presence of screening, the potential term (2.27) can still be evaluated analyti-

cally as:

(ni + TLj — 1)'
GG+ ™

Vzl] = _ZNmCiNnjCj

The Slater integral (2.25) can either be evaluated by Legendre expansion and Gauss-
Laguerre quadrature as described in [16], or by first evaluating Vj, (71, 79) numerically by
using modified Bessel functions as described above and then evaluating the integral (2.31)
by the combination of Gauss-Legendre and Gauss-Laguerre quadrature as described in the

previous section.

In all calculations below, when evaluating the integral (2.31) we use a 52 points quadrature
approach and two elements (0,0.1), (0.1, 00) in atomic units. We found these settings to

be sufficient to obtain converged results to all printed digits.
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Chapter 3

Unscreened Results

The purpose of this section is to provide evidence that our program works and is able to
reproduce known results from the literature. We perform convergence tests for the Hartree-
Fock total energy, we check the energies for a particular STO basis, we check second order

perturbation theory as well as second order Green function results against literature.

Historically, the standard reference for accurate STO orbitals used to be [28]. Lately, the
new state of the art reference seems to be given in the references [14] and [8], that provides

very accurate and small STO bases for any atom from He to Lr.



3.1 Hartree-Fock

3.1.1 Ra

Radium is a closed shell atom with Z = 88 and the configuration:

fn,o = [27 27 27 27 27 27 2]

fn,l — [67 67 67 67 6]

fr2 = [10,10,10]

fn,3 - [14]
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We used the STO basis from [8]. Then the self-consistent SCF Hartree-Fock energies are

(weused tolE=1e-10 and tolP=1e-4):

Orbital energies:

n 1

O J o U > WD

O

e e e
R I S i e
P RF R PR O0OO0O0O0O00000000O0 OO

aob W N

E

—-3388.
-587.
-147.

-37.

.25316973

.37067573

.14876040

.08165397

.72340804

.66147311

.24608995

120.
535.
2517.

17467.
-566.
-137.

.72200096

.44987601

.81981163

[a.u.]

94104039
74420729
87172991
34157119

95628254
76303483
93096422
06888395
94278080
79866067

E

-92217.
-15993.
—-4023.
-1016.
-224.
-37.
-4.

2.

19.
126.
686.
3291.
14578.
68516.
475303.
-15427.
-3749.
-890.
-175.
.30820982

-22

[eV]

77956191
33393552
79458059
11587210
58017937
29798516
04797645
22191763
68493462
84513981
98107455
38797843
85423631
38899682
13709612
29830980
69241475
41096784
51005952
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6 1 0.30903607 8.40929961
7 1 3.55206062 96.65648921
8 1 18.98639327 516.64605785
9 1 72.27839685 1966.79528758
10 1 251.72462436 6849.77568014
11 1 976.90370346 26582.90283152
12 1 5274.79312909 143534.42689472
1 2 -119.22873420 —-3244.37899532
2 2 -24.19779669 -658.45556300
3 2 -3.29686823 -89.71235093
4 2 0.70184142 19.09807715
5 2 6.25455310 170.19505280
6 2 24.88623637 677.18896040
7 2 82.85779377 2254.67533067
8 2 299.22996892 8142.46190290
9 2 1466.26202858 39899.02064377
1 3 -12.43050199 —-338.25117611
2 3 0.82042589 22.32492479
3 3 7.01801677 190.96995658
4 3 24.88560409 677.17175514
5 3 78.31351681 2131.01926041
6 3 314.75842103 8565.01259240
EKIN+EHF (a.u.): 1.33E-04
KINETIC ENERGY (a.u.): 23094.3036253898
HF ATOMIC ENERGY (a.u.): -23094.3034926210

Which agrees with [8] to every single printed digit. There are a total of 42 DOFs. We
print 8 decimal digits after the floating point in order to show the numerical accuracy of

our results.

In the FE basis, with p = 20 we get:

tolE: 1.00000000000000006E-009
tolP: 1.00000000000000005E-004

dp: 1.23226187438905178E-006
Emax-Emin: 6.00266503170132637E-010
Orbital energies:

n 1 E [a.u.] E [eV]

1 0 -3388.94108567 —-92217.78079401
2 0 -587.74424129 -15993.33486066
3 0 -147.87175129 -4023.79516241
4 0 -37.34161387 -1016.11703329
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Method E,, [a.u.]

STO -23094.303492621
[8] -23094.303492621
FE -23094.30366642
[6] -23094.30367

Table 3.1: Ra energies summary

5 0 -8.25320196 —-224.58105652
6 0 -1.37070249 -37.29871325
7 0 -0.14877117 -4.04826955
1 1 -566.94280420 -15427.29894631
2 1 -137.79868421 -3749.69305533
3 1 -32.72204108 -890.41205938
4 1 -6.44990553 -175.51086305
5 1 -0.81983794 —22.30892576
1 2 -119.22876709 -3244.37989034
2 2 -24.19783041 -658.45648063
3 2 -3.29689595 -89.71310530
1 3 -12.43052485 —-338.25179817
EKIN+EHF (a.u.): 7.46E-08
KINETIC ENERGY (a.u.): 23094.30366649
HF ATOMIC ENERGY (a.u.): -23094.30366642

There is total of 316 DOFs (79 DOFs for each [ = 0,1, 2,3). In order to determine the
accuracy of the total energy, we did a p-study, see Figure 3.1. Instead of plotting the
accuracy depending on p, we can also plot the corresponding DOFs on the x-axis, see the

Figure 3.2 (this graph also contains the accuracy of the STO calculation above, as a black

dot).

The figure above shows that the total energy is converged to 10~8 a.u. accuracy. This total
energy agrees with the converged HF energy E;,, = —23094.30367 from [6]. Compared to

our converged energy, we can see that the STO energy is 1.74 x 1074 a.u. accurate.
The total energies are summarized in Table 3.1.

Note that using the same STO basis for Ne we get.
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Figure 3.1: The FE p-study for radium.



Error [a.u.]

|
[u

(o T e T S B
o o o o
SV

107

Params: N=4, a=200, Ng=53, rmax=30
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Figure 3.2: The FE and STO convergence study for radium.
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Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -32.77356052 -891.81397481
2 0 -1.93123658 -52.55162211
1 1 -0.85098345 -23.15643837
EKIN+EHF (a.u.): 2.21E-03
KINETIC ENERGY (a.u.): 128.54698875
HEF ATOMIC ENERGY (a.u.): -128.54478045

Which seems less accurate than the results for Ra as can be seen from the virial theorem.

3.1.2 Mg

Using the basis from [14] we obtain the following energies:

Orbital energies:

n 1 E [a.u.] E [eV]

1 0 -49.03173628 -1334.22145568
2 0 -3.76772161 -102.52492359
3 0 -0.25305242 -6.88590681
4 0 0.19036542 5.18010663
5 0 1.31843427 35.87642254
6 0 6.21612265 169.14930695
7 0 23.31152940 634.33900255
8 0 82.63946152 2248.73420784
9 0 354.50455399 9646.55992069
10 0 2672.27000174 72716.16797485
1 1 -2.28222603 -62.10253134
2 1 0.06757963 1.83893544
3 1 0.89720617 24 .41422262
4 1 4.69875505 127.85963292
5 1 18.45916821 502.29953397
6 1 72.19528066 1964.53358083
7 1 291.83482629 7941.22982924

EKIN+EHF (a.u.): 2.73E-08
KINETIC ENERGY (a.u.): 199.61463630
HF ATOMIC ENERGY (a.u.): -199.61463627

The total energy from this STO result is plotted (circle) with FE convergence study in

Figure 3.3. We also plotted a so called even-tempered STO basis from [15] and plotted



Nb DOFS Etot virial theorem
3 9 -1.9564661093751155E+02 2.3306633268013258E+01
4 12 -1.9961452117971305E+02  8.6578325391428734E-04
5 15 -1.9961458931754072E+02  8.5459817000810290E-08
6 18 -1.9961459732988519E+02 1.9453174084560487E-04
7 21  -1.9961460026776570E+02 2.8981480468814880E-04
8 24 -1.9961460111276716E+02 3.2856031558026189E-04
9 27 -1.9961460141633930E+02 3.4488235490925945E-04

10 30 -1.9961460153923431E+02 3.5201552296371119E-04
11 33 -1.9961460159216077E+02 3.5519382603865779E-04
12 36 -1.9961460161569153E+02  3.5646990903615006E-04
13 39 -1.9961460162633020E+02  3.5544459390735028E-04
14 42 -1.9961460163116988E+02 3.7544886237128594E-04

Table 3.2: Even-tempered STO basis Etot and virial theorem values for Mg
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convergence (triangles) as well as the virial theorem (crosses) into the same graph. The

values are in the Table 3.2. Notice that for DOF=15 the virial theorem says 8.5 X 1078 a.u.,

but from the graph, the accuracy of the solution is only around 10~* a.u.. With increasing

the size of the basis (the IV, column), the virial theorem error gets worse to almost 10™% a.u..

This is caused by the fact, that the virial theorem only provides a lower bound of the error.

By properly updating the a and 3 parameters of the even-tempered STO basis we can

converge the total energy to 1072 a.u., see Figure 3.4.

3.1.3 Xe

We did even-tempered STO convergence study for Xe, see Figure 3.5.

And we get the total energy —7232.138362 with accuracy 2 x 10~ % a.u..
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Figure 3.4: The FE and even-tempered STO convergence study for Mg

100



Error [a.u.]

STO even-tempered basis convergence for Xe

Lo Converged value: dofs=60, E_conv=-7232.13836224737
E | | | - - STO abs(E-E_prev)
: — STO abs(E-E_conv)
0l T X L x x STO virial theorem ||
; ‘ : X ; :
10*
10°
10°
x
-7 I I 1 I I
10730 35 40 45 50 55 60
DOFs

Figure 3.5: Even-tempered STO convergence study for Mg

101



102

3.2 Green’s Function

3.2.1 Be

We use the basis from [27]:

nbfl (0) =5

nl(:5, 0) = [1, 1, 3, 2, 2]

z1(:5, 0) = [5.4297_dp, 2.9954_dp, 3.5810_dp, 1.1977_dp, 0.8923_dp]
nbfl(l) = 5

nl(:5, 1) = [2, 2, 4, 3, 3]

z1(:5, 1) = [5.6998_dp, 2.7850_dp, 4.1500_dp, 1.4387_dp, 0.9819_dp]
nbfl (2) = 2

nl(:2, 2) = [3, 3]

z1(:2, 2) = [1.2662_dp, 7.8314_dp]

and obtain for Hartree-Fock:

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -4.73091975 -128.73487906
2 0 -0.30838296 -8.39152746
3 0 0.28793901 7.83521917
4 0 2.86050169 77.83821285
5 0 24.42017728 664.50684701
1 1 0.06564083 1.78617784
2 1 0.36350961 9.89160007
3 1 1.84075556 50.08950845
4 1 8.60671953 234.20075914
5 1 39.89676518 1085.64623955
1 2 0.58990240 16.05206144
2 2 25.29557149 688.32753589
EKIN+EHF (a.u.): 9.87E-04
KINETIC ENERGY (a.u.): 14.57377528
HF ATOMIC ENERGY (a.u.): -14.57278856

The MBPT?2 gives:
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Method FE,, [a.u.]
HF -14.57278856

HF [27] -14.572789
GF -14.647063

GF [27] -14.641639

Table 3.3: Green’s function total energies for Be

Method FE; [a.u.] FEs5 [a.u.]
HF -4.73091975 -0.30838296

HF [27] -4.731 -0.308
GF -4.61175302 -0.32724971
GF [27] -4.612 -0.327

Table 3.4: Green’s function IP energies for Be

MBPT results:
EO+E1 (HF) = -14.57278856

The Green’s function calculation gives:

Green’s function calculation:

E = -4.61175302 dE = 7.65E-11
E = -0.32724971 dE = 6.27E-12
Ntot = 4.0052366660634702

Etot -14.666238504287731

The total energy was calculated using a rectangular contour from 0 to —60 a.u.. Extending
the integration contour further than —60 a.u. does not change the total energy. We partition
the domain into 0.1 x 0.1 rectangles and integrate using Gaussian integration of order
N, = 20 over the top and bottom parts of each rectangle (as well as the left resp. right side
of the very left resp. very right rectangle), see the Figure 3.6. Following the approach from
[27], we have corrected the Green’s function total energy for lack of trace conservation by
dividing it by the ratio of the true trace to that actually produced. In the case of Be we
did Etot / Ntot « 4. The total energies are summarized in Table 3.3. The ionization

potentials are summarized in the Table 3.2.2.



Figure 3.6: The contour for total energy integration of Be.
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3.2.2 He

For He we use again the basis from [27]:

nbfl(0) =5
nl(:5, 0) = 1[1, 1, 2, 3, 3]
z1(:5, 0) = [1.4191_dp, 2.5722_dp,
nbfl (1) = 4
nl(:4, 1) = [2, 2, 3, 4]
z1(:4, 1) = [2.5834_dp, 3.6413_dp,
nbfl(2) = 3
nl(:3, 2) = [3, 3, 4]
z1(:3, 2) = [3.6365_dp, 4.8353_dp,
and we get for HF:
Orbital energies:
n 1 E [a.u.]
1 0 -0.91804537
2 0 0.88239287
3 0 5.07439794
4 0 19.66534934
5 0 119.00491186
1 1 1.16674233
2 1 5.07923156
3 1 17.00970593
4 1 55.12789316
1 2 3.79051952
2 2 16.77713044
3 2 60.33563243
EKIN+EHF (a.u.): —-4.08E-04
KINETIC ENERGY (a.u.):
HF ATOMIC ENERGY (a.u.):
for MBPT2:
MBPT results:
EO+E1 (HF) = -2.86167868

and Green’s function:

4.2625_dp,

5.5308_dp,

6.9694_dp]

E

-24.
24,
138.
535.
3238.
31.
138.
462.
1500.
103.
456.
1641.

[eV]

98128597
01113203
08139625
12139290
28847938
74867471
21292570
85765772
10632781
14528608
52895653
81612641

2.86127076
-2.86167868

3.9979_dp,

5.7217_dp]
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5.4864_dp]
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Method FE,, [a.u.]
HF -2.86167868

HF [27] -2.86168
GF -2.9010108

GF [27] -2.90090

Table 3.5: Green’s function total energies for He

Method FE; [a.u.]
HF -0.91804537
HF [27] -0.918
GF -0.90587321
GF [27] -0.906

Table 3.6: Green’s function IP energies for He

Green’s function calculation:

E = -0.90587321 dE =
Ntot = 2.0001613956929334
Etot = -2.9012448886081441

9.02E-12

We correct the total energy for lack of trace conservation. We used the same contour as for

Be (Figure 3.6) and the same integration order N, = 20.. The total energies are summarized

in Table 3.5. The ionization potentials are summarized in the Table 3.2.3.

3.2.3 Hydrogen Molecule

For the H, we use the interatomic distance 1.4 a.u. and the 6-31G** Gaussian basis, the

same configuration as in [11] (see also this reference for a detailed description of the basis).

Total energy comparison is in the Table 3.7. The ionization potentials are in the Table 3.8.

3.2.4 Ammonia

For N H3 we use the atomic configuration from [11] and the 6-31G** Gaussian basis. Total

energy comparison is in the Table 3.9. The ionization potentials are in the Table 3.10. Note:
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Method . [a.u.]
HF -1.13128434
HF [11] -1.131
MBPT?2 -0.026341791
MBPT2 [11] -0.0263
MBPT2 [12] -0.02634179
MBPT3 -0.005515979
MBPT3 [12] -0.00551598

Table 3.7: HF and MBPT?2 total energies for the hydrogen molecule

Method F [a.u.]
HF -0.59465997
HF [11] -0.595
GF -0.59832340
GF [11] -0.598

Table 3.8: Green’s function IP energies for the hydrogen molecule

the HF energy —0.421 from [11] is probably wrong, because the total energy as well as the

Green’s function ionization potential agrees.

3.2.5 Methane

For the C' H4 molecule we use the C'H bond length of 2.05 a.u. and the 6-31G** Gaussian
basis, the same configuration as in [11]. Total energy comparison is in the Table 3.11. The

ionization potentials are in the Table 4.

Method E,, [a.u.]
HF -56.19457246
HF [11] -56.195

Table 3.9: HF total energies for ammonia
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Method FE| [a.u.]
HF -0.41491598
HF [11] -0.421
GF -0.35357570
GF[11] -0.353

Table 3.10: Green’s function IP energies for ammonia

Method FEo [a.u.]
HF -40.20170036
HF [11] -40.202
MBPT?2 -0.16815509
MBPT2 [12] -0.16815509
MBPT3 -0.01819243
MBPT3 [12] -0.01819243

Table 3.11: HF and MBPT?2 total energies for the methane molecule

Method FE; [a.u.]
HF -0.54451008

HF [11] -0.543

HF [12] -0.54451009
GF -0.51384473

GF[11] -0.510

Table 3.12: Green’s function IP energies for the methane molecule
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Chapter 4

Screened Results

After having presented plenty of evidence for the trustworthiness of our computational
tools, we present in this section the results for screened electron-nucleus as well as electron-

electron interaction.

In particular, we show that if we only screen electron-nucleus as opposed to both electron-
nucleus and electron-electron screening, we can produce the same total energy. This means

that the experimental results can be interpreted in different ways.

4.1 Be

In Figure 4.1 we plot the Hartree-Fock eigenvalues together with second order Green’s

function results for Be. Both exhibit similar trend.

We have also performed a calculation with D, = 100 and D,.. = oo (i.e. without e — e

screening):



Energy [a.u.]

Dependence of eigenvalues on Debye length

..... El HF
----- E2 HF
— E1GF[]
— E2 GF[]

Figure 4.1: HF and GF eigenvalues for beryllium.
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Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -4.69136904 -127.65864930
2 0 -0.26897735 -7.31924625
3 0 0.32713617 8.90182828
4 0 2.89995575 78.91181265
5 0 24.45968140 665.58180867
1 1 0.10485005 2.85311497
2 1 0.40275502 10.95952181
3 1 1.88017673 51.16221303
4 1 8.64622701 235.27581235
5 1 39.93628578 1086.72164972
1 2 0.62923171 17.12226644
2 2 25.33510034 689.40317060
EKIN+EHF (a.u.): 1.59E-01
KINETIC ENERGY (a.u.): 14.57263329
HF ATOMIC ENERGY (a.u.): -14.41399656

The total energy —14.41399656 a.u. can be reproduced alternatively with D,,, = 80 and

D,.. = 151.32235 to accuracy 10~% a.u.:

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -4.70120880 -127.92640299
2 0 -0.27891615 -7.58969477
3 0 0.31064466 8.45307135
4 0 2.88349893 78.46399957
5 0 24.44323726 665.13434093
1 1 0.08836110 2.40442782
2 1 0.38626422 10.51078439
3 1 1.86371042 50.71414173
4 1 8.62977885 234.82823507
5 1 39.91984324 1086.27422554
1 2 0.61274761 16.67371109
2 2 25.31865776 688.95574533
EKIN+EHF (a.u.): 1.58E-01
KINETIC ENERGY (a.u.): 14.57230512
HF ATOMIC ENERGY (a.u.): -14.41399656

as well as with D,,, = 50 and D, = 37.102069 to accuracy 10~% a.u.:
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Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -4.72975509 -128.70318697
2 0 -0.30806010 -8.38274204
3 0 0.26320819 7.16225946
4 0 2.83506986 77.14617762
5 0 24.39469170 663.81334896
1 1 0.04090382 1.11304972
2 1 0.33855496 9.21254935
3 1 1.81533650 49.39782038
4 1 8.58115980 233.50524356
5 1 39.87122358 1084.95121734
1 2 0.56467167 15.36549832
2 2 25.26998935 687.63141044
EKIN+EHF (a.u.): 1.60E-01
KINETIC ENERGY (a.u.): 14.57416124
HF ATOMIC ENERGY (a.u.): -14.41399656

or with D,,, = D,. = 62.50862 to accuracy 1078 a.u.:

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -4.71470166 -128.29356232
2 0 -0.29263351 -7.96296299
3 0 0.28814455 7.84081227
4 0 2.86073937 77.84468044
5 0 24.42045295 664.51434834
1 1 0.06585616 1.79203731
2 1 0.36368780 9.89644875
3 1 1.84096083 50.09509399
4 1 8.60697118 234.20760691
5 1 39.89703911 1085.65369363
1 2 0.59006984 16.05661757
2 2 25.29583992 688.33484027
EKIN+EHF (a.u.): 1.59E-01
KINETIC ENERGY (a.u.): 14.57264209
HF ATOMIC ENERGY (a.u.): -14.41399656

For D.,, = 100, D.. = oo we calculate DFT results using the LDA exchange and correla-

tion potential:



zZ= 4 N= 5500
E_tot= -14.288416

state E occupancy
1s -3.816913 2.000
2s -0.166421 2.000

and with D,,, = D,. = oo:

7= 4 N= 5500
E_tot= -14.447209

state E occupancy
1s -3.856411 2.000
2s -0.205744 2.000
4.2 Mg
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In the Figure 4.2 we plot Hartree-Fock eigenvalues together with second order Green’s

function results for Mg.

For D.,, = 100, D.. = oo we calculate DFT results using the LDA exchange and correla-

tion potential:

7= 12 N= 5500
E_tot= -197.706607

state E occupancy
1ls -45.854891 2.000
2s —-2.785497 2.000
2p -1.600722 6.000
3s -0.057813 2.000

and with D,,, = D, = oc:

zZ= 12 N= 5500
E_tot= -199.139406

state E occupancy
1s -45.973167 2.000

2s -2.903746 2.000



Energy [a.u.]

Dependence of eigenvalues on Debye length
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Figure 4.2: HF and GF eigenvalues for magnesium.
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2p -1.718970 6.000
3s -0.175427 2.000

4.3 H Minus lon

For H~ we did a Coulomb calculation:

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -0.04622233 -1.25777362
EKIN+EHF (a.u.): 1.05E-07
KINETIC ENERGY (a.u.): 0.48792984
HF ATOMIC ENERGY (a.u.): -0.48792973

then D.. = D,,, = 20:

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -0.04533145 -1.23353158
EKIN+EHF (a.u.): 4.68E-02
KINETIC ENERGY (a.u.): 0.48635786
HEF ATOMIC ENERGY (a.u.): -0.43951187

The accuracy of this calculation is roughly 1075 a.u. in total energy, from a convergence

study. We also did D, = 40, D.,, = 20:

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -0.02467076 -0.67132558
EKIN+EHF (a.u.): 6.58E-02
KINETIC ENERGY (a.u.): 0.48350408
HF ATOMIC ENERGY (a.u.): -0.41771724

The accuracy of this calculation is roughly 107° a.u. in total energy.

Finally we did D, = 10, D,,, = 20:
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Den Dee HF total energy Correlated wf.

00 00 -0.48793 -0.5277
20 20 -0.43951 -0.47904
20 10 -0.47794 -0.51590

Table 4.1: H minus screened total energies summary

Orbital energies:

n 1 E [a.u.] E [eV]
1 0 -0.08019560 -2.18223338
EKIN+EHF (a.u.) : 1.79E-02
KINETIC ENERGY (a.u.): 0.49583783
HF ATOMIC ENERGY (a.u.): -0.47793727

The accuracy of this calculation is roughly 107 a.u. in total energy.

This can be compared with correlated wave function results [24], see the Table 4.1.
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Chapter 5

Summary and Conclusions

We chose radium as a benchmark for our Hartree-Fock (HF) code, because it requires Slater
integrals up to £ = 6 and has non zero occupation numbers up to [ = 3. By comparing
the total energy with [8] for the same Slater Type Orbital (STO) basis, and agreeing to 14
significant digits (all digits given in [8]), means that our Hartree-Fock and STO code works
well. By using the finite element (FE) basis, we get the converged value which agrees
exactly with [6] (10 significant digits), and from the p-convergence graph it suggests that
our FE total energy is actually correct to 1078, a.u. (13 significant digits). This establishes

that our FE basis works correctly as well.

The STO basis is highly efficient, for example for Ra one can get 10~* accuracy with only
42 degrees of freedom. One has to optimize the basis for each atom separately, one cannot
reuse the basis directly, for example the basis for radium is less accurate if used for Ne as
established in the section Unscreened Results. However, when an optimized basis is used

for Ne, it provides better accuracy with fewer basis functions.

The very same basis is less accurate for Ne. The disadvantage of the STO basis is that it

is not straightforward to improve the accuracy — one has to add more functions to the basis
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and optimize the exponents.

The efficiency of the FE basis, on the other hand, is determined by the choice of a mesh.
Once the mesh is fixed, then the systematic, robust and variational way to improve the
accuracy is just to increase the polynomial order. An exponential mesh with the mesh
parameter ¢ = 200 and polynomial order p = 20 allows to get accuracy 10~° for all atoms

up to radium.

The traditional FE approach is to solve the Poisson problem by solving the differential
equation and the exchange term by calculating the integrals on the fly. As shown above,
this approach is equivalent to first calculating all two particle integrals, and then solving

the Roothaan equations.

The even-tempered STO basis for Mg shows nicely that the virial theorem cannot always
be trusted as an error indicator, because it only provides the lower bound on the actual
error of the total energy. In that example for DOF=135, the virial theorem gives almost 108
accuracy, while the actual error is 10~%. As such, the only reliable way to asses the accuracy
is to do a convergence study. Other possible error indicators that may provide information
about the quality of the wavefunctions (and ultimately the basis) include the cusp condition

and various sum rules like the Thomas-Reiche-Kuhn sum rule.

By properly updating the o and 3 coefficients as increasing the number (V) of basis func-
tions, one can converge to the exact HF solution. The convergence rate is exponential. The
only practical disadvantage is that the overlap matrix eventually becomes ill-conditioned
for high N, preventing the self-consistency cycle to converge. The FE approach does not

suffer from ill-conditioning.

We use STO basis that is optimized for unscreened (Coulomb) potential. More thorough
study would be needed to reoptimize the basis for the given Debye screening. The virial

theorem in the presence of screening takes a more complicated form than just a simple sum
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of kinetic and total energy. The best way to judge the accuracy of results is to perform a

convergence with respect to the STO basis, for example using the even-tempered basis set.

As a few examples of post-HF calculations, we show results for Green’s function and many
body perturbation theory in second order. Other common post Hartree-Fock methods in-
clude configuration interaction and coupled cluster. The unscreened results can be directly
compared to literature and the energies are in good agreement, thus establishing that our

implementation is correct.

In the screened results, we concentrate on the HF level of theory. We ran various calcu-
lations for He and Mg as well as H~. As an example of a post-HF calculation, we show
screened second order Green’s function calculations for He and Mg. We also compare our
Hartree-Fock H~ results with a correlated wave function approach and as seen from the
behavior of energies as we decrease the Debye length, both set of energies follow the same

trend.

The computational methods we have presented in this thesis are developed to the point
where one can include essentially any screening potential and are accurate enough to distin-
guish between results and help resolve possible ambiguities in the interpretation of plasma

data.



Chapter 6

Appendices

6.1 Legendre Polynomials

Legendre polynomials P;(x) defined by the Rodrigues formula

and orthogonality relation:
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6.1)



Two Legendre polynomials can be expanded in a series:

2

k+1 k1l m
P(z)P(z) = Y (2m + 1) P,y ()
m=lk—1| \0 0 0

This was first proven by [1], where he shows:

’“i A(s —k)A(s — DA(s —m) 2m + 1

Pilz)Pi() = A(s) 2s +1

B ()

m=|k—I|

and

where s = FtLtm

The coefficient in the expansion can then be written using a 37 symbol as:

A(s — k)A(s —)A(s—m) 1

A(s) 25 +1
_ ) e O e () 1
5 (%) 25 +1
B AR Gl | G | e I R
- 237k+sfl+sfm (285) 25 + 1 -
_coheshesn o1
(285) 25+ 1

(25 —2k)! (25 —2D)! (25 —2m)! (s1)* 1

( _
(=R (s =D ((s —m)h2 (2s)! 25 +1
(25— 2k)!(2s — 20)!(25 — 2m)! ! o
(2s+1)! (s—k)(s—=Dl(s—m)]
k-l m

00 0
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So we will just use the 35 symbol form from now on. We can now calculate the integral of

three Legendre polynomials:
1
/ Pu() Py() P ()t = 6.2)

1 k+ L Il n
_/ 3 (20 + 1) Po() P () da =
“Lo=jk—g \O 0 O

k+1 kLl n
= Z (2n+1) 2nm_ _
n=|k—l| 0 0 0 2n+1
2
El m
=2
0 0 0

This is consistent with the series expansion:

Pu(2)P(x) = Qm“/ Pu(2)P(2) P (2)da Py (z) =
m=|k—1| -1
k+1 kLl m
= > (2m + 1) P,y ()

m=k—1| \ O 0 0

Any function f(x) (where —1 < z < 1) can be expanded as:

fx) =" fiP(x)

f = (2

;Ll) /1 f(z)P(x)dz



For the following choice of f(x) we get (for [t| < 1):

fir=

20+1) [ B

fz) =

T
2 1 V1 —2xt + 2

2

1

V1 —2xt +t?

_ @+ /'” ) (l_gi+t2> ( R> dR =
I

+t|

123

R

14t _ 2 2
(21+1)/ Pl(l R—H)dR:
1

2t

204+1) (M /1 R2+¢2
G [ (LR g
2t |17t| 2t 2t —t
—
Code:
>>> from sympy import var, legendre, integrate

>>>
(L,
>>>

>>>

t
t
t
t
t
t
t
t

O J oy U W NP O

T T T = S S T )
O 0 J o0 WN RO

var ("1l R t")
R, t)
f = (2+x141) / (2+*t)

for _1 in range(20):

** 2
**3
* x4
* %5
** 6
* %7
* %8
**x9
txx10
Txx11
Txx12
T*x%x13
txx14
T*xx15
tx*x16
txx17
t*x18
txx19

x integrate (legendre (1, (1-Rxx2+t*%2) / (2=t)),
(R, 1-t, 1+t))

print

_L

f.subs (1,

_1).doit () .simplify ()
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So the Legendre polynomials are the coefficients of the following expansion for |¢| < 1:

o0

1
-y P
V-2t + P2 lz_; He)

Note that for [t| > 1 we get:

1 1 1 1 & 1\’
—— = = — P(x) (-] =signt Py(z)t 1
Vi—2zt+2 |t \/1_2x%+(%)2 |t|; H )(t) ant ) Fi(a)

6.1.1 Example |

Very important is the following multipole expansion:

1 1 1 B 1 B

r—r1| —Z 2 _or.p/ o2 2
e A e oy

>

(6.3)
_ i(“)lp(f f’)—i re P& 1)
= "~ - 7“> [ - — Tl>+1 l

Where 7~ = max(r,7’) and r- = min(r,7’). Assuming r > 7', we get for the first few

terms:
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6.1.2 Example Il

Let’s find the expansion of

e~V 1—2xt+t2

Jw) = V1= 2t + 2

for [t| < 1. We get:

(204 1) [! B(x)e-ovi-2ett®

p— d p—
S > ), Vit
_p2.442 _a
_<2Z+1>/H'Pl<1 ) R( R)dR_
2 1-+4] R
2041) (M (1— R?4¢2
_ ( + )/ Pl < R + )e—aRdR:
20 +1) [ 1— R%+¢2
:w/ P L e R4qR
2t 1—t 2t

Here is the result for the first few [:

(62at _ 1) e—at—a

Jo= 2at

; 3 (a?te*™ + a’t + ate®™ + at — ae®™ + a — 2 + 1) e
179 a3t?

F 5 (att?e?et — ot? + 3a3t2e?™ — 3a3t? — 3a3te?™ — 3at + 3alt?e?™ + X) et
2 — 5 a5t3

X = —3a%t? — 9a%te®™ — 9a2t3a%e?* — 3a% — 9ate®™ — 9at + 9ae®™ — 9o + 9e?* — 9
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Expanding in ¢ up to O (t7) we get:

fi=e g
go=1+ ey Loy Lo (t")
6 120 5040
1 1 1 1
— t t . 2t3 . 3t3 - 4t5 _ 5t5 O t7
a1 + « +10a +10a +280a +280a + ( )
g2 =t + at® + ey Lop s Lo Lospp Lo L oy
2 3 14 14 42 504 504
1 646
— %+ 0"
et T ()
gs =1+ at’ + 2ot Loy Lo Lasey Loy Lassio (")
5 18 15 18 45 270
3 1 2 1 1 3 1
. 22 L 20 L LB L B8 oM D M0 L 54
R e T R T TV R rT
1 646 7
— o+ 0O (t
+ 55100t O ()
Code:

>>> from sympy import var, legendre, integrate, exp, latex, cse

>>> var("1l R t alpha")

(1, R, t, alpha)

>>>

>>> £ = (2+x1+1) / (2+t) * integrate(legendre(l, (1-Rx+x2+t+%2) \
/ (2xt)) * exp(-alpha*R), (R, 1-t, 1+t))

>>>
>>> for _1 in range(3):
print "f_¢d & =" %_1, latex(f.subs(l, _1).doit() \
csimplify (), "\\\\"
f 0 & = \frac{\left(e~{2 \alpha t} -1\right) e~{- ... \\
f 1 = \frac{3}{2} \frac{\left (\alpha”{2} t e~{2 ... \\
f_ 2 & = \frac{5}{2} \frac{\left (\alpha”{4} t~{2} ... A\

>>> for _1 in range (5):
result = f.subs(l, _1).doit().simplify() / exp(-alpha)

print "g %d & =" %_1, latex(result.series(t, 0, 7)), "\\\\"
g_ 0 & =1 + \frac{l}{6} \alpha~{2} t"~{2} + \frac{1}{120} ... \\
g_1l & =t + \alpha t + \frac{1}{10} \alpha™{2} t~{3} + AN
g_2 & = t~{2} + \alpha t~{2} + \frac{1l}{3} \alpha”~{2} oo\
g_3 & = t~{3} + \alpha t*{3} + \frac{2}{5} \alpha”~{2} AN
g_4 & = t~{4} + \alpha t~{4} + \frac{3}{7} \alpha”~{2} oo\
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9

The long output of the script has been truncated by the dots ”...”.

6.1.3 Example Il

, o o T< Vs (T 2
e_\r—Dr\ B e >\/1 2(T>D) +(T>> B 1 e—a\/m
r—1l 2 s /1 — 22t + t2
r = r>\/1—2(f—<>f~-ff+<’”—<) - '
T> >
where:
r>
o= —=
D
r=1 %
r
t=-—
r>
6.1.4 Example IV
_Irp—ro|
V(ilry —r3|) = ——
(= eaf) =

The potential V' is a function of 7y, 5 and cos ¢ only:

V(lry —raf) =V (\/7“% —2ry - T +7°§> =V (\/7’% — 211y cos¢9+r§> =

=V (ry, 12, cos6)



So we expand in the cos ¢ variable using the Legendre expansion:

V(|ry —ra|) = V(r1,re,cos6) = Z‘/}(rl,rg)ﬂ(cos@)
1=0

where Vj(r, r2) only depends on 71 and r:

20+ 1 (1
Vi(ry,re) = —5 V(|ry — ro|)Py(cos #)d(cos 0) =

—1
_Ir1—ro]

2041 (!
_ 2 / ‘ Py(cosf)d(cos ) =
2 Joalr =

r1+r2 2 _ .2 2
_2l+1/ eBPl<r1 7‘+T2)dr
|

2?”1 T2 r1—ra|

In the limit D — oo we get:

l
<
Tl>+1

W(rla 7,.2) —

In general, the V;(ry, r2) expressions are complicated. For the first two lowest [ we get:

D Ir1—"al ri+ro
Vo(ry,re) = (e D —e D )

27’17“2

1 9

3D <—D262% + D? — Drye®® + Dry + Drye®B + X) e~ DB
‘/1(7"1,7“2) = 5

2.2
rirs

In Vi(ry,7m3) we assume r; > 7o.

Another option is to use the Gegenbauer’s addition theorem, which gives directly:

%(Tl,rg) = (2]{3 + 1)
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Using:
1 2\ 22
I(z) = (—) F 1.2
G =077 5 01(”+ 4)
L(v) (2" 22 [(—v) /z\* 2
K,(z) = (2) (;) oF1 (1—’/72)4' <2 )(§> oF1 (V—l-l,—)
and
v 2 2
L,(.CE)KV(Z/) = 2— (5 OFl (V—|— 1, Z) OFl (1 — U] Z) +
I(—v) (zy\ ? Y
F 1:— | oF; 1. =
2F(u—|—1)(4 01<V+’ ofr |\
we get
Vi(ri,m) = L 1 T<k+%p R N SR
BT T2) = Tlopri\n) O 2 4p? ) 0\ 2T P ype
(rsre)?

1
T 1 r<7’>>k+§ 3 7’2< 3 Ti
— FlE+ = — )oFi|kF+ = —5 =
+2F2(k+g)sin(7r(k+g))<4D2 o\ P yiapz )\ Py ape
rk 3 r? r?
:rk_frloFl(k"’_?ﬁ)oFl(%_ ;4—52)4-

>

T L (—1)k+t 3 rk 3 2
T Fole+2, 25 ) om (ke 2 =
T <) T e o \F T iape ) o (M g

where we used:

T 1
M) = s )T 1)

Since (F} (a;0) = 1, we get for D — oo:

k
<
T§+1

Vk(rlﬂ"z) —
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as we should.

6.2 Spherical Harmonics

Are defined for m > 0 by

20+ 1 (1 —m)! A
Yim (0, ¢) :\/ 4_; EZ+Z;! P (cos ) pimo

where /" are associated Legendre polynomials defined by

P () = (1) (1~ )2 Pi()

and P, are Legendre polynomials. For m < 0 they are defined by:
Yin(Q) = (~1)"Y;", ()
Sometimes the spherical harmonics are written as:

Yim (6, ¢) = O (0) P (¢)

where:
1 imao
cI)m(¢) = \/%6
21 (m)l pm(cos0)  form > 0
m)! 1 -
@lm(9> _ 2 (I+m)!

(—1)™O;_n(6) form < 0
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The spherical harmonics are orthonormal:

2m s
0 0

and complete (both in the /-subspace and the whole space):

l
> Yim(0,0)* = 2;; ! 6.5)
m=—I
1
Z Z Yim (0, )Y (0, ¢') = ——0(0 = 0)0(6 — &) = (2 =) (6:6)

=0 m=—1

The relation (6.5) is a special case of an addition theorem for spherical harmonics

20+1

Z Vi (0, )Y, (0, ¢) = Py(cos ) (6.7)

m=—1

where 7 is the angle between the unit vectors given by & = (6, ¢) and &' = (¢, ¢'):

cosy = cosfcos @ + sinfsin b cos(¢p — ¢') =+ -

Relations between complex conjugates is:

Yim () = (=1)"Y1,-m(Q)

(=D)™Y () = Yim ()
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6.2.1 Examples

/ Py(z)dx = Py(z) Py(z)dx = 20k

1 -1

/ Yio(Q)dQ = / Yio (Q)V4AT Y0 (Q2)dQ = VAmdyg

6.3 Gaunt Coefficients

We use the Wigner-Eckart theorem:

. . g k) .
Gm|Ty|jm') = (1) GIITH15")

-m q m

Where:
k
TF = Yy,
In order to calculate the reduced matrix element (j||T%||5'), we evaluate the W-E theorem
form=qg=m'=0:

(JOITy15'0) = (=1 GIT*15")

00 0
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and also evaluate the left hand side explicitly:

GOITELT0) = (01¥iali0) = [ V(@) Yia(@)Yo(@)d0 =

47 4

\/(2]' + 1)(2k447: (27 + 1) % /1 Py(2) () Py (2)da =

\/ 27+ 1DEE+ 127 +1) 1 / P;(cos 0) Py (cos 6) Py (cos 0) sin 0d0d =

2

\/(2j+1)(2k+1)(2j’+1) j ok
Am 00 0

where we used (6.2). Comparing these two results, we get:

. y .y . kj .
(j\|TkHj’)—(—1)J\/(2J+1)(2k4:rr1)(23+1) ik

00 0

and finally:
/ Y5 () Yeg ()Y ()dS2 =
= (m{Tljm’) = (=17 GIIT* 1) =
—m q m/
= (1™ ik J (_1>j\/(2j+1)(2k+1)(2j/+1) ik
i 00 0

-m q m

( 1)_m\/(2j+1)(2k+1)(2j’+1) j ok i ko
Am 00 0 -m q m
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In order to evaluate other integrals of spherical harmonics, we just use the above result, for

example:
/Yhml (Q)Yz2m2 (Q)}/lswm (Q>dQ =
— (™ [ (@) i) i (2 =
B (_1>m1(_1)_(_m1)\/(2l1 + 1) +1D)(2054+1) [ I 1 h la I3
N 47

0O 0 O —(—ml) mo Mg

B \/(211+1)(212+1)(213+1) Lol ) [ L b I3

Am 0O 0 O my Mg Mg

This is the most symmetric relation. It was first obtained by [5] (equation (9), p. 194, where
the author expanded the 35 symbols, so his formula is more complex but equivalent to the

above).

It is useful to incorporate the selection rule m; + mqy 4+ ms = 0 of the 37 symbols into the

formula and we get:

/ 47T —

(m,bm \/4k:+1/ i ()Y () Vi (2)dQ2 =
- [ 4n \/(21+1)(2k+1)(2l’+1) Lk U l k )
4k + 1 4mr 00 0 .

—m m-—-m m

I kU l k I

= (=)™ (@2l +1)(2I' +1)
0 0 O -m m-—m' m

In this form the ¢* symbols are the same as in [43]. From the other selection rules of the 3



symbols it follows, that the c¢*(I,m, ', m’) coefficients are nonzero only when:
=V <k<Ii+4l

[ +1I' + k = even integer

6.3.1 Example |

L V') = VI [ Vi ()i Q)2 = G

6.3.2 Example Il

Z (I,m,l,m) = Z \/ 4;{4_7:_ 1 / 2)Y5o(2) Y2 ()2 =
-y ﬂ 1 Min@PYis(@a0 =

47 2l +1
4k +1 41 /Yk‘)(mdﬁ_

4 2l 1
" + \/47T(5k0:

(20 + 1)dko
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6.3.3 Example Il

[ A4m
! JE—
l m,l ,m Ak 1 / lm Ykm m! (Q)Y/ /(Q)dQ =
_ AT /@ ) By Oy B i1 0O =
- Ak +1 Im®P 9 m—m Pm—mOrm Py S -
- /W@ O Oy i Qde/%@*@ ®,dp =
- Ak + 1 o Im9k,m—m'D'm S o mExm—m/¥m’/ -
[ 4w i 1 \?® A e
— = T o —im¢ i(m—m')¢ im’¢ _
py 1/0 O Ok m—m' Oy sin 6d0 (\/_> /0 e e e ?do
1 3 2
\/ 4]{3 1 / @lm@km m’@l’ /sin 6d6 <\/_> /O d(ﬁ =
H A 11 / @lm@km m’®l’ » sin #d6

6.3.4 Example IV

A, —m, I, —m/) =

I kU [ k U
= (=)™ (@2l + )2 +1) =
0 00 m —m4+m' —m
l Lt I kU l k U
= (—)"(=D)" 21+ 1) (20 + 1) -
0 0 -m m-—m' m
kU [ k I
= (=)™ +1)(20 +1) =
0 00 -m m—m' m

(,m, ', m)

Where we used the fact, that [ + k + I’ is an even integer and (—1)™ = (—1)~™. ¢* is not
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symmetric in [m and I'm/:

(U m! 1,m)

, U k1 I k [
= (=)™ /(@2 + 1)(2l + 1) =
000 —-m' m' —m m
, I kU l k U
= (=1)"™ (@2l +1)(2I' +1) =
000 m m' —m —m
, I kU l k U
= (=)™ (20 +1)(2I + 1) =
0 00 -m m-—m' m
I kU l k I

= (=)™ ™ (=)L + D)2 + 1) =
000 -m m—m' m

= (=)™ "™k, m, ', m)

Few other identities:

F(1,0,1,0) = /(21 + 1) (2I' + 1) S
00 0
2
Lk Uy k@oro) 0 (L0600 d(I,0,k,0)
00 0l VA+DRIFD) JRA+DHEE+1) VU DRk+1)

c*(1,0,1',0) = *(I',0,1,0)



6.3.5 Example V

> (F(m, I'm')’ =
" 2
B , I kU l k I
=> (2+1)20 +1)
m 0 00 -m m—-—m' m

=2+ 1)(2' +1) :

0 00 m \—m m-—m' m

s l k I

=20+1)2'+1) —

20+ 1 o
:/ 4 Pr(x-x

/2l’+12k+1 ‘&= T,

W 1°
A=l —k|

o + 12k +1 "TZ*

A=~k

C2%k+1 far+1

)

A+1 ., PP
dmdrw 2 2l’+1C(Z’O’A’O)2A+1M§:YM(Q)

47 20+ 1

(1,0,1,0)Yin(Q)

138

(6.8)
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Where we used the following identities:

N Vi (Vi (@) = T Pi(% %)
— 4
. 2k+1 .
S Vi@V (@) = =Bk %)
p T
2
U'+k E U
Pu(x-X)Py(x-%X) = CA+1)P(x-%X) =
A=k \ O 0 O
A= l-l—k:
2)\—|—1 .
ST F,0,0,0)P (% - %) =
A= w k|
A= l+k A
2\ + 1
> Va1 7T 2 V(@)
A=|l/ k| ==X

Note: using the integral of 3 spherical harmonics directly in (6.8):

5 0 2 07 0 1057~

47
= Yo () Vi (Q) T lck(z, m,l',m)

doesn’t straightforwardly lead to the final result, as it is not obvious how to simplify things

further.
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6.4 Wigner 3j Symbols

Relation between the Wigner 37 symbols and Clebsch-Gordan coefficients:

Ji J2 U3 (—1)dr—d2=ms (rmajamal )
= (= UJ1Mmayj2mz|jJ3 — M3y
my Mo M3 23 + 1

S . i m , i J2 o Js
(Jimajameljsms) = (—1)71772FM8 /245 + 1

my Mo —Mg

They are nonzero only when:

my +mg +m3 =0
j1 + J2 + j3 = integer (or even integer if m; = my = m3 = 0)
Imi| < Ji
1 = g2l < s < i+ 2

They have lots of symmetries. The 35 symbol is invariant for an even permutation of

columns:

ma MMz My

J3  J1 )2

ms 1M1 Mo
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For an odd permutation of columns it changes sign if 7; + j> + j + 3 is an odd integer:
i J2 s
my Mo Mg
_ (—1)j1+j2+j3 Je I3
mg M Mg

— (_1)j1+j2+j3 J J3 J2 —

my M3z Me
— (_1)j1+j2+j3 JsoJ2n
ms3 Mo My

and the same if you change the sign of the second row:

my Mo Mg
— (=1 Jitja+is J1 J2 J3
=(-1)
—mip —Mmy —Mg

Orthogonality relations:

Z jl j2 ] jl j2 J B 5jj’5mm/
mims \ M1 Mo M my mo m 2j+1
As a special case, we get:
2
l k I 1

Z =51 (6.9)

-m m—m' m
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Here is a script to check that the equation (6.9) works:

from sympy import S
from sympy.physics.wigner import wigner_3j

def doit (1, k, 1lp, m):
s =0
for mp in range (-1lp, 1lp+1l):
s += wigner_33j(1, k, lp, —m, m—mp, mp)**2
print "2%2d $2d £2d %24 " % (1, k, lp, m), s, " ", S(1)/(2x1+1)

k =4
lp = 3
print " 1 k 1lp m: 1lhs rhs"
for 1 in range(l, 6):
for m in range (-1, 1+1):
doit (1, k, 1lp, m)

it prints:

lp m: 1lhs rhs
3 -1 1/3 1/3
1/3 1/3
1 1/3 1/3
=2 1/5 1/5
-1 1/5 1/5
0 1/5 1/5
1 1/5 1/5
2 1/5 1/5
-3 1/7 1/7
-2 1/7 1/7
-1 1/7 1/7
0 1/7 1/7
1/7 1/7
2 1/7 1/7
3 1/7 1/7
-4 1/9 1/9
-3 1/9 1/9
-2 1/9 1/9

w
o

SO D DD DD WWWW W W w NN DN R R
SO DD DD DD D D D DD DD DD DD D DD DR

WWwWWWwWwwwwwwowwowowwowwowww
P~

-1 1/9 1/9
0 1/9 1/9
1 1/9 1/9
2 1/9 1/9
3 1/9 1/9
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4 4 3 4 1/9 1/9

5 4 3 -5 1/11 1/11
5 4 3 -4 1/11 1/11
5 4 3 -3 1/11 1/11
5 4 3 -2 1/11 1/11
5 4 3 -1 1/11 1/11
5 4 3 0 1/11 1/11
5 4 3 1 1/11 1/11
5 4 3 2 1/11 1/11
5 4 3 3 1/11 1/11
5 4 3 4 1/11 1/11
5 4 3 5 1/11 1/11

Values of the 3; coefficients for a few special cases (use the symmetries above to obtain

values for permuted symbols):

Bobom _(—1)° (25 — 2K)!(2s — 20)!(25 — 2m)!
00 O N (2s 4+ 1)!
s!
. (s —k)!(s = Dl(s —m)! for 2s = k4 [+ meven
El m
=0 for2s=Fk+1+modd

00 O
1 A | :
e :<—1>j‘m‘%\/ L
moo-m—3 3 (25 +1)(2j +2)

j+1 g :(_1)jm1\/ G=mG—m+1)
(27 +1)(25+2)(25 +3)

j+1 5 1 _ (1) 20+m+1)(j —m+1)
N (25 4+ 1)(27 +2)(25 + 3)
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6.4.1 Examples

=3 3 Js | [ Js B3 3|
m—% % —ms3 —ms m—%%
mome g

. 1
J=J3— 5 m=—ms3s

R - .
= (_1)j3_%+m3_%\/( Js— 3 tms+3 = (—1)istma=t Js +ms

. 1 1 . . X 1
T2 2 11 _1 1
5 ) 1 1
mg+5 —5 —mMmg ms —msz—1 1
1 1
. j = ,] 24
2]3 2 2 B
( 1) 1 1 -
mooTmmeg g )
J=J3—g3im=ms

. 1 ;
= (—1)2j3(—1)j3_%_m3_% J3— 35— M3 +3 _
(23 =1+ 1)(2js —1+2)
j3 — ms

= (-1 2j3 -1 ja—ms—1 _JsTms
ey 2j3(2J3 + 1)
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11 A L
73 * 2 2 J3 — (_1)j3+%+%+j3 J3+ 2 J3 2 _
ms — % % —ms ms — % —ms %

. 1 1
= 1)2j3+1 J+t3 J 3 _
11
m.o —m-=3 3/ L
]:js;m:m3—§
: 1,1
— (_1)2j3+1(_1)j3—m3+%—% J3 — m3 + 5 + 3 _
(23 + 1)(2]5 + 2)
(23 + 1)(273 + 2)
T T ' B AV CE B S
m3+% _% —ms —mg—% ms %
1 1
I A A _
11
m.o—m-=3 3

. 1
J:J3§m:*m3*§

y 1 1 R
— (_1)j3+m3+%—% J3 +m3 + 2 + 2 _ (_1>j3+m3 J3 +m3 + 1
(273 + 1)(243 + 2) (275 + 1)(275 + 2)

6.5 Multipole Expansion

Using (6.3) we get:

1 i rt PE) =Y L dm Y @)
g _— . — s m T . T
-] 20+ 1 : ’

where we used the formula:

20+1

> (#lim) (iml#) = (#-#|B)

m
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6.6 Robust, Accurate and Fast Evaluation of Modified

Bessel Functions

For the screened Hartree-Fock calculations we need Fortran routines for a fast and robust
evaluation of the modified Bessel functions. The following implementation using rational

approximation has proven to work well:

real (dp) function Inu(k, x) result (r)

integer, intent(in) :: k
real (dp), intent (in) :: x
select case (k)
case (0)
! v = sinh(x) / exp(x)

if (x < 20) then

r = sinh(x) / exp(x)
else
r=1._dp / 2
end if
case (1)
! v = —sinh(x)/x + cosh (x)

' v = r *« sqrt(2/(pixx)) / exp(x)
if (x < 0.55_dp) then

r = x%%2/3 + xxx4/30 + x*x6/840 + x*%x8/45360 + &
x**10/3991680 + &
x*x12/518918400 + x*%14/93405312e3_dp

r =r / exp(x)

else if (x < 2) then
r = (-1.0118340437504393201742626606e-13_dp + &
x%x(1.816670640113517482116741309%9e-12_dp + &
x%(0.333333333318047257036705475493_dp + &
x%x(0.0283477684328350973136495456416_dp + &
x%x(0.0236972901524850660936691284628_dp + &
x%x(0.0018095002919993302530473889535_dp + &
x%(0.000376379638016770111327098946609_dp + &
(0.0000200246480593843172713997406232_dp + &
1.01338637272678665804111511983e—-6_dp*x)*x)))))))/ &
(I + xx(1.08504330505794283765963608202_dp + &
x%x(0.556135176398351735247605123725_dp + &
x*%(0.177204358493610809522295217793_dp + &
x%x(0.0387591827785532218461461492913_dp + &
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x%x(0.00603331772767809320892209353842_dp + &
xx(0.000663930390602843320578606798458_dp + &
(0.0000484437498700383824299885362686_dp + &
1.88315077527785406856560709781le-6_dp+*x)*x)))))))

else if (x < 20) then

r = (-sinh(x)/x + cosh(x)) / exp(x)
else

r = (-1/x + 1) / 2
end if

case (2)
(3/x**2 + 1)+*sinh(x) - 3/x*cosh (x)
' v = r * sqrt(2/(pixx)) / exp(x)
if (x < 0.4_dp) then
r xxx3/15 + xx%x5/210 + x*x%x7/7560 + x**x9/498960 + &
x**x11/51891840 + x*xx13/7783776e3_dp

' r =

r =r / exp(x)
else if (x < 3.5_dp) then
r = (2.53492679940778614368716713944e-12_dp + &

Xx (—4.54239143359406142775391525584e-11_dp + &
x* (3.74155600551604503226833667911e-10_dp + &
x*x(0.0666666647818812413079530441494_dp + &
x*(0.00828258168209346350068333077357_dp + &
x*x(0.00316314651226673854191486006661_dp + &
x*(0.000312916425508586674670599989463_dp + &
(0.0000347881775004914918533122949261_dp + &
1.78379773794153349607916665442e-6_dp*x)*x)))))))/ &
(1. + xx(1.12423862743404991052489502731_dp + &
xx (0.600257501089318988530867089925_dp + &

x*x(0.20062393658095786500607161529_dp + &
xx(0.0464529738128345227818430451247_dp + &
x*(0.00775200781581904134897323422714_dp + &
x*(0.000932283869002308809130049094732_dp + &

(0.0000765450448110628850893821308195_dp + &
3.64978189893775492541031628736e—-6_dp*x)*x)))))))
else if (x < 8) then
r = (-0.0500329770733375148059871692299_dp + &
x%(0.225443974816227263854027844348_dp + &
xx (-0.490706738714676572173733908052_dp + &
x%(0.754739228306267786750520915722_dp + &
(-0.0229222956512753039643375612586_dp + &
x%x(0.0417199171935382735527783646423_dp + &
x%x(0.00129242688582393560040014185308_dp + &
(0.000436655909016956929989211236885_dp + &
0.0000544588062620298286123134699247_dp*x)*x)))))))/ &
(1 + x%(11.1481461018360358000411784178_dp + &
x%x(2.95111664564331863128521306942_dp + &

X*
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X% (2.07069035717497213861002964422_dp + &
x%(0.212130624675779325122087859297_dp + &
x%x(0.0985267048591193186479900210954_dp + &
x%x(0.00581026870781213052737501655128_dp + &
(0.00120128946303470807826705767304_dp + &
0.000108903528444754760503502120599_dp*x)*x)))))))
else if (x < 20) then

r = ((3/x**2 + 1)*sinh(x) - 3/xxcosh(x)) / exp(x)
else
r = (3/x*x%x2 - 3/x + 1) / 2
end if
case (3)
' v = —(15/xx*%3 + 6/x)*sinh(x) + (15/x*x2 + 1)=*cosh (x)

' v =r / exp(x)
if (x < 0.4_dp) then
xx*x4/105 + x+*%6/1890 + x*++x8/83160 + x*x%x10/6486480 +&
x**x12/778377600 + x*%x14/132324192e3_dp
r / exp(x)
else if (x < 3) then
r = (-3.70655078828583097759525479916e-13_dp + &
x%(7.15112302218910770115285755762e-12_dp + &
x* (—6.36681926888695741582309642988e~-11_dp + &
x* (3.47928680854080370346525732791e-10_dp + &
x* (0.00952380821395522376879618243177_dp + &
x%x(0.00113757240229334056047517957181_dp + &
x*x (0.000297467643525496580117283299361_dp + &
(0.0000243340659637433371695954961197_dp + &
1.81721245776908511864649367981le-6_dp*x)*x)))))))/ &
(I + x%(1.11944472257087316750869453522_dp + &
x*%(0.595124068593635706143579962619_dp + &
0.197986316667328417652509149837_dp + &
0.0456127952595471262482188760838_dp + &
0.00757090880409778905789353557549_dp + &
x%x(0.000905726554901565254770825575224_dp + &
(0.0000739095656995355486962496918923_dp + &
3.54519707102049776194411547746e-6_dp*x)*x)))))))
(
(

r

]
Il

X *
X *
X *

o~ o~ o~ —~

else if (x < 8.5_dp) then
0.00117649571172537032041386386937_dp + &
xx (=0.00530534669296740084953876529485_dp + &
x*x(0.0113989437968364216304855248904_dp + &

(
(-0.0155143209720413375494757271933_dp + &
(
(

r =

X *
xx(0.0245092943569822333734792982989_dp + &
x%x(—=0.00194266321525633715561142461716_dp + &
xx(0.00125839658564675731614612557048_dp + &
(-0.0000560593512807954817946224257333_dp + &

0.0000154307073445195296381347198964_dp*x)*x)))))))/ &
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(I + x%(1.93920721196223643040357762209_dp +
x%(0.871960706430017695531414950855_dp +
x%x(0.294335907964445235622348955601_dp +
x%(0.076510324944994462960832902772_dp +

x%(0.0103358291871056058873144950985_dp + &

x%(0.00249717323564249173430366673788_dp + &
(0.0000729070672630135675918235119142_dp + &
0.0000308632011694791287440146822781_dp»*x)*x)))))))

(x < 20) then

r = (—(15/x**3 + 6/x)*sinh(x) + &

(15/xx%2 + 1)*cosh(x)) / exp(x)

22 2 &

else
r = (-15/x**3 + 15/x*x2 — 6/x + 1)/2
end if
(4)
' r = (105/xx*4 + 45/x*x2 + 1)*sinh(x) &

- (105/x*x*x3 + 10/x) *cosh (x)
! =r / exp(x)
if (x < 0.2_dp) then
r = x*x%x5/945 + x*%7/20790 + xx+x9/1081080 + &
xx%11/97297200 + x*x13/132324192e2_dp
r =1 / exp(x)
else if (x < 1.7_dp) then
r = (8.24833340467311342180121686171e-18_dp + &
-2.9977388208095462038421382427e-16_dp + &
4.98591599598783667120520966419e-15_dp + &
-5.0417212779726133920165179676%e-14_dp + &
3.47424275623446932695212209666e—-13_dp + &
0.00105820105646713443251629043736_dp + &
x%x(0.0000979757728258499019673125884795_dp + &
(0.0000182024072642408317859820498652_dp + &
1.0631472458547091790087783848e—-6_dp*x)*x))))))) /
(1 + x*(1.09258709917337245791086210753_dp +
x*(0.564333846348740813775052159905_dp +
x* (0.181503092836557003863165983269_dp +
x%x(0.040177538019272720474585552471_dp +
x* (0.00635509731709913059075978583153_dp &

x* (0.000715397138065847382814527384553_dp + &
(0.0000540407967369787069953788458276_dp + &
2.26320060646140077482435126776e—-6_dp*x)*x)))))))
(
(

X *
X *
X *
X *
X *

o~ o~ o~ o~ o~ —~

+ 22 2 &2

else 1if (x < 4) then

1.79380868029518008655845945341e-7_dp + &

x*x(1.42021959889593932447404701528e-6_dp + &

x* (=5.3621673060507414018999203431e-6_dp + &
(
(

x*(0.0000128612071905009120973461141937_dp + &
x*x(—-0.0000220283666472339963720124703845_dp + &

&
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x%x(0.00108692026226442881323459546524_dp + &
xx(=0.000108914780493366312610770062505_dp + &
(0.0000213026860907556990203197490202_dp - &
2.40044294668610963152692356425e-6_dpx*x)*x))))))) /&

(1 + xx(0.92511576565864173804826819565_dp + &

x%x(0.376185570863101848786874779376_dp + &
xx(0.0979599622990753625780606726782_dp + &
x%x(0.0139543384283183184757129378369_dp + &
xx(0.00167710554949622675142353677903_dp + &

x*x (—0.0000841270733243543647065400772874_dp + &
(—=4.04735930419963375054951672688e-6_dp - &
4.82907242383463140296057166244e—-6_dp*x)*x)))))))

else if (x < 10) then

r = (0.000395502959013236968661582656143_dp + &
xx(=0.001434648369704841686633794071_dp + &
(0.00248783474583503473135143644434_dp + &
(=0.00274477921388295929464613063609_dp + &
xx(0.00216275018107657273725589740499_dp + &
(
(

X *

X *

x%x (—=0.000236779926184242197820134964535_dp + &
x%x(0.0000882030507076791807159699814428_dp + &
(-4.62078105288798755556136693122e-6_dp + &
8.23671374777791529292655504214e~-7_dpx*x)*x))))))) /&
(1 + x%(0.504839286873735708062045336271_dp + &
x%x(0.176683950009401712892997268723_dp + &
x%x(0.0438594911840609324095487447279_dp + &
x%x(0.00829753062428409331123592322788_dp + &
x%x(0.00111693697900468156881720995034_dp + &
x%(0.000174719963536517752971223459247_dp + &
(7.22885338737473776714257581233e-6_dp + &
1.64737453771748367647332279826e—-6_dp*x)*x)))))))
else if (x < 20) then
r = (1.49435717183021678294278540018_dp + &
x%x(—-1.9954827594990599398954087063_dp + &
x%x(1.19185825369343226912112655137_dp + &
x%x(-0.40866680980235804096143699423_dp + &
x%(0.0852839860059780325406440673318_dp + &
(-0.00980617919194154929317057489645_dp + &
0.000550291361244287676343295379476_dp*x)*x))))) /&
(I + x%(0.420439518058743727857466136746_dp + &
x%x(0.144024726914933127664739439568_dp + &
x%x(0.035261250406130055921113600336_dp + &
x%x(0.0349770458351085078647522073879_dp + &
(-0.00860653991097136433951965579037_dp + &
0.00110058277850687516223459976889_dp*x) *x)))))
else
r = (105/x**4 — 105/x**3 + 45/xx+x2 — 10/x + 1)/2
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end if
case default
r = -1 ! For compiler warning "fix"
call stop_error("k =" // str(k) // " not implemented.")

end select
r =r % sqrt(2/ (pixx))
end function

real (dp) function Knu(k, x) result (r)
integer, intent (in) :: k
real (dp), intent(in) :: x
select case (k)
case (0)
r =1
case (1)
r =1/x + 1
case (2)
r = 3/x*%%2 + 3/x + 1
case (3)
r = 15/x*%*x3 + 15/x*x2 + 6/x + 1
case (4)
r = 105/x*+4 + 105/x**x3 + 45/xx+x2 + 10/x + 1
case default
call stop_error("k =" // str(k) // " not implemented.")
end select
r = r * sqrt(pi/ (2+x))
end function

These routines were tested against arbitrary precision implementation in SymPy [13], the

results are in Figures 6.1, 6.2, 6.3, 6.4, 6.5.
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Figure 6.1: The convergence of modified Bessel function for k=0
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= Error plot
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Figure 6.2: The convergence of modified Bessel function for k=1
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Figure 6.3: The convergence of modified Bessel function for k=2
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Figure 6.4: The convergence of modified Bessel function for k=3
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Figure 6.5: The convergence of modified Bessel function for k=4
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